SDMS US EPA REGION V -1

SOME IMAGES WITHIN THIS DOCUMENT MAY BE ILLEGIBLE DUE TO BAD SOURCE DOCUMENTS.

Ecolab Center 370 N. Wabasha Street St. Paul, MN 55102 612/293-2697 612/293-2573 Fax 147752

0000002

Steven M. Christenson Senior Attorney Law Department

January 31, 1997

VIA OVERNIGHT EXPRESS

Mr. Lawrence W. Eastep
Illinois Environmental Protection
Agency
2200 Churchill Road
Springfield, Illinois 62706

VLA OVERNIGHT EXPRESS

Ali Hyderi, Esq. Office of Illinois Attorney General Environmental Bureau 100 W. Randolph Street - 11th Floor Chicago, Illinois 60601

Re: Evergreen Manor Site

IEPA No. L-2010400015 Winnebago County

Dear Messrs. Eastep and Hyderi:

I. Introduction

Please allow this letter and enclosures to serve as the response of Ecolab Inc. (Ecolab) to the Illinois Environmental Protection Act Section 58.9(b) "Notice" letter dated September 30, 1996 directed to Ecolab by the Illinois Environmental Protection Agency (IEPA or Agency) and to the related letters dated October 28, 1996. December 12, 1996, and January 14, 1997 from the Illinois Attorney General (IAG).

As you know, Ecolab had been granted an extension of time until February 3, 1997, to respond. The extension was granted, in part, to enable Ecolab, its environmental consultants (Conestoga-Rovers & Associates), and its attorneys (Johnson & Bell, Ltd.) to review volumes of documents made available to Ecolab following FOIA requests served upon the IEPA and other agencies. (Numerous documents, however, have been withheld or redacted.) In further consultation with the Agency, Conestoga-Rovers & Associates (CRA) performed water level measurements and sampling to facilitate Ecolab's response. Finally, interviews of current and former Ecolab employees at the Ecolab facility near Highway 251 and Rockton Road in Roscoe, Illinois were conducted.

After careful analysis, Ecolab and CRA conclude that Ecolab has not contributed to the alleged trichloroethylene (TCE) and other volatile organic compound (VOC) contamination at the Evergreen Manor Site. Accordingly, Ecolab denies any and all liability in connection with the Evergreen Manor Site based upon the Illinois Environmental Protection Act, the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), or any other statutory or common law theory.

As discussed in further detail below, IEPA's preliminary analysis appears to have overlooked the following facts:

- 1. TCE was not used at the Ecolab facility;
- 2. TCE has never been detected in groundwater or soils beneath the Ecolab facility;
- 3. Small amounts of inhibited 1,1,1-trichloroethane (1,1,1-TCA) and tetrachloroethylene (PCE) were used at the earliest in approximately 1975-1978 and at the latest in approximately 1991 at the Ecolab facility -- too late in time for any hypothetical spills to migrate two miles from Ecolab to Evergreen Manor by 1990, when the contamination was discovered:
- 4. There is no evidence of any solvent spills or improper disposal at Ecolab, as IEPA's own investigators concluded when evaluating the nearby Warner Electric contamination in 1983;
- 5. As described in the enclosed CRA report, the groundwater underlying the Ecolab property does not flow directly toward the Evergreen Manor Site subdivisions; and
- 6. As described in the CRA report, other documented sources of TCE in soil and groundwater are likely sources of the TCE detected in the Evergreen Manor Site area.

Given the circumstances, it is inappropriate for IEPA to seek to compel Ecolab's installation of an alternative water supply system for the Evergreen Manor area to address a TCE-related risk with no nexus to Ecolab's current or historical operations. Ecolab respectfully requests that the IEPA withdraw the Section 58.9(b) "Notice" to Ecolab as well as IEPA's request that Ecolab perform certain remedial activities.

II. No Solvents Were Disposed Of On-site By Ecolab

As background, some history regarding the Ecolab plant at Highway 251 and Rockton Road may be helpful. The plant was built in the late 1950s by Klenzade Products, Inc. Economics

Laboratory, Inc. (now Ecolab) acquired Klenzade and the plant in August 1961. From the beginning of its operation through approximately July 1974, only soaps and detergents for the food industry were made at this plant. No degreasing operations were conducted. To the best of our knowledge, no TCE, 1,1,1-TCA, or PCE solvents were used at the plant during this time period.

In 1975, the plant began making cleaning equipment such as detergent dispensers, rather than soaps and detergents. Some time after the mechanical equipment plant began operation in 1975, a 120-gallon vapor degreaser that used inhibited 1,1,1-TCA was installed. The December 1983 air permit application indicates that it was a Baron/Blakeslee model HL-600. Sludge from the degreaser and spent solvent were always properly disposed of off-site. No spills or improper disposal of the solvent took place.

While we do not have complete documentation of every off-site disposal shipment during 1975 - 1983, we believe the solvent waste was picked up by Interstate Pollution Control of Rockford, Illinois, U.S. Ecology, and/or McKesson Chemical. During 1987 - 1990, Solvent Systems International of West Dundee, Illinois recycled the solvent on-site and collected the still bottoms for off-site disposal. Other off-site disposal instances are documented in Ecolab's Section 104(e) responses dated September 1995 and October 1995. This letter and enclosures supplement Ecolab's prior responses to the IEPA's CERCLA Section 104(e) "Information Request" letters dated July 20, 1995 and September 28, 1995.

More importantly, Ecolab has used only small amounts of solvent material. First, no TCE (the primary contaminant of concern at the Evergreen Manor site) has ever been used at the Ecolab plant to the best of our knowledge. Second, as indicated in the enclosed traveling requisition form, Ecolab purchased only 18 drums of 1,1,1-TCA during 1984 - 1991. In 1991, Ecolab stopped using solvents entirely. While we have not located purchase records covering 1975 - 1983, similar operations were conducted during that time. Third, Ecolab used nominal amounts of three other solvents: Magnus No. 2, which contained approximately 30% 1,1,1-TCA; Magnus No. 5, which contained approximately 55% tetrachloroethylene or PCE; and Viking Chemical Safe-Solv, which contained 25% PCE. Material Safety Data Sheets (MSDS) for these products are enclosed. The traveling requisition form for Safe-Solv and invoices for five drums of Safe-Solv are attached, which document the only purchases of this product by Ecolab. Like the 1.1.1-TCA from the vapor degreaser, these materials were always disposed of off-site when spent. In May 1987, the vapor degreaser was removed from service as confirmed by Ecolab's letter to the Agency dated November 18, 1987. In 1991, the plant stopped using solvents in parts washers altogether.

In sum, Ecolab did not use TCE, the primary contaminant of concern at the Evergreen Manor site. By way of comparison, Warner Electric purchased TCE by the 8,000 gallon tank, Regal-Beloit used approximately 12 drums of TCE (660 gallons) at a time prior to February 1982, according to IEPA's investigative memorandum dated May 26, 1983 (attached), and TCE was found in the AAA/Waste Management well as early as 1983. TCE has never been observed in the soil or groundwater underlying Ecolab's property. Ecolab used comparatively small amounts of 1,1,1-TCA and PCE and always disposed of any such waste off-site at an approved disposal facility. Consistent with the IEPA's conclusions in the May 26, 1983 investigative memorandum, even today there is "no evidence of chlorinated solvent mismanagement" at Ecolab.

III. Ecolab's December 1979 Detergent Remediation Is Unrelated To The Solvent Contamination

At the October 24, 1996 meeting, your summary of the case against Ecolab appeared to be based primarily on the fact that Ecolab used some 1,1,1-TCA and PCE solvents and that Ecolab conducted an IEPA-approved cleanup of a former wastewater lagoon on its property in December 1979. As discussed above, Ecolab's use of small amounts of chlorinated solvents other than TCE does not support a conclusion that there were spills or improper disposal of such materials. Likewise, Ecolab's cleanup of materials from the manufacture of soap and detergents before 1975 does not support a conclusion that solvent contamination resulted -- no 1,1,1-TCA, TCE, or PCE solvents were used or disposed of at the property in the manufacture of soaps and detergents. IEPA's own soil monitoring data confirms this fact.

The manufacturing of soaps and detergents, obviously, did involve the use of certain caustics, such as sodium hydroxide, that are unrelated to 1,1,1-TCA, TCE, and PCE solvents. As documented by the test results attached to the August 6, 1980 IEPA letter, the sludges in the former wastewater lagoon contained elevated levels of certain metals, including phosphorus. zinc, nickel, iron, manganese, and chromium. The enclosed report dated December 27, 1979 describes the cleanup of soap and detergent residue in detail.

You have further provided field notes by IEPA staff dated December 11, 1979 that refer to a "chemical odor" without any further description. The Special Analysis Forms (attached to the August 6, 1980 letter) prepared by IEPA's Charles Corley describes the actual samples collected in December 1979 by IEPA staff. These more specific forms refer only to the metals and caustics resulting from the soap and detergent manufacturing as being at issue. The odor of cleaning products associated with the December 1979 remediation of the wastewater lagoon in no way suggests that chlorinated solvents were disposed of in the wastewater lagoon. Any odor during the excavation was a caustic or alkaline odor from soap production -- not solvents.

IV. Available Environmental Data Confirms That Ecolab Did Not Contribute To The Chlorinated Solvent Contamination At Evergreen Manor

Enclosed for your information is a report entitled "Contaminant Source Evaluation - Evergreen Manor Site" prepared by CRA in January 1997. Ecolab assumes that the IEPA is familiar with the credentials and experience of CRA with regard to environmental matters in general and groundwater contamination problems in particular.

Without repeating the information presented in the CRA report, Ecolab wishes to highlight several points:

- 1. The December 1996 test results found no evidence of groundwater contamination to suggest that Ecolab's property is an ongoing contaminant source. In short, Ecolab's property is <u>not</u> a contaminant source.
- 2. TCE contamination <u>has</u> been documented in the soil and groundwater at both the AAA/Waste Management and Regal-Beloit properties;
- 3. TCE has never been observed in soils or groundwater at Ecolab;
- 4. Given the west-southwesterly groundwater flow direction, Ecolab is not directly in line with the contaminant plume detected at Evergreen Manor;
- 5. Based on the groundwater flow velocity, any hypothetical discharge on the Ecolab property must have taken place more than 25 years before 1990 to reach Evergreen Manor -- at least ten years before the earliest date that Ecolab began using 1,1,1-TCA and PCE in approximately 1975-1978; and
- 6. Warner Electric remains a possible source of at least a portion of the contamination at Evergreen Manor. At the October 24, 1996 meeting, IEPA staff assigned to the Evergreen Manor project indicated that they had not fully reviewed the Warner Electric file. Given the 10,000 ppb-plus TCE contamination levels found a few hundred feet east of the Evergreen Manor area, surely some further investigation of that potential source is warranted. Indeed, the IEPA memorandum dated January 9, 1991 to T. Ayers suggests that pumping at the relatively new wells in Evergreen Manor may have pulled contamination in that direction. Moreover, the very high TCE concentrations at Warner Brake may have resulted in contamination at Evergreen Manor by diffusion.

V. Scope of Work Comments

The IAG's letter dated December 12, 1996 specifically requested comments on the draft Scope of Work (SOW) provided by the IEPA's letter dated November 1, 1996. Given that Ecolab is not a liable party, our comments are limited.

We note, however, that the proposed remedial design/remedial action (RD/RA) work plan and remedial investigation/feasibility study (RI/FS) work plan (to be followed by a potential second RD/RA work plan) is unnecessarily complicated and is not a cost-effective method of addressing the alleged TCE risk. A more streamlined approach relying on natural attenuation and biodegradation may well be appropriate. As you know, RI/FS procedures, RD/RA plans, and National Priority List (NPL) ranking requirements were not imposed at the Warner Electric site despite the more extensive TCE contamination there. To the extent that an alternative water supply may be warranted, the Illinois Department of Public Health or the IEPA might look to the developer(s) of the subdivisions to install a potable water supply consistent with Winnebago County zoning standards.

VI. There Is No Basis To Impose Liability On Ecolab

As discussed above, there is no factual basis to conclude that Ecolab contributed to the contamination at Evergreen Manor. Moreover, there is no legal basis to impose further costs on Ecolab under federal or Illinois law.

As you know, last year the Illinois legislature amended Section 58.9 to the Illinois Environmental Protection Act, 415 ILCS Section 5/58.9, to eliminate claims for joint and several liability at multiple PRP sites. Instead, the applicable legal standard of liability is now based on the proportionate degree of responsibility that can be attributed to a particular potentially liable party. For Ecolab, that percentage is zero.

Ecolab never used TCE, the only contaminant exceeding MCLs at Evergreen Manor and arguably warranting further remedial action. There is no evidence of spilling or improper disposal of 1,1,1-TCA or PCE solvents by Ecolab. The December 1996 monitoring well results from groundwater samples collected on the Ecolab property were generally within levels that are considered safe to drink under the Safe Drinking Water Act. In short, Ecolab is not a source of the alleged solvent contamination. If the State seeks to pursue issuing an administrative order or other adversarial legal action against Ecolab, we hereby request that the State proceed to make the allocation pursuant to § 58.9(c) before undertaking further enforcement measures.

While your correspondence refers primarily to Illinois state law, you have suggested that the Agency may request enforcement action by the U.S. Environmental Protection Agency pursuant to the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). As you are aware, the U.S. EPA previously declined IEPA's request to pursue federal investigation of the Evergreen Manor site due to the low levels of contamination detected at the site. Under U.S. EPA's policy toward landowners, like Ecolab, that have had subsurface migration of contaminants onto their property from elsewhere, the U.S. EPA generally refrains from enforcement action. Policy Toward Owners of Property Containing Contaminated Aquifers, 60 Fed. Reg. 34,790 (July 3, 1995). Given this policy, we would not expect U.S. EPA to pursue action against Ecolab.

Moreover, to the extent that IEPA seeks to pursue a course of action under federal law, you should be aware of the U.S. District Court's decision in <u>U.S. v. Olin Corp.</u>, 927 F. Supp. 1502 (S.D. Ala. 1996), in which Judge Hand ruled that CERCLA is inapplicable to events that took place before December 1980. As noted above, the groundwater flow velocity indicates that for contamination to have reached Evergreen Manor from the Ecolab plant approximately two miles away, the release would have had to commence before 1965. Because this time period is more than a decade before CERCLA's effective date and CERCLA has no retroactive applicability before 1980 under <u>Olin</u>, CERCLA's applicability to Ecolab is certainly questionable. <u>See also Acushnet Co. v. Coaters Inc.</u>, 937 F. Supp. 988 (D. Mass. 1996) (PRP's waste must actually cause response costs to impose CERCLA liability).

VII. Conclusion

Ecolab is not a liable party under Section 22.2(f) of the Illinois Environmental Protection Act or under Section 107(a) of CERCLA. Accordingly, Ecolab requests that the IEPA withdraw the September 30, 1996 "Notice" letter with respect to Ecolab and refrain from referring this matter to the IAG for the filing of a formal complaint or to the U.S. EPA for enforcement against Ecolab.

As you know, Section 58.9(a)(2) specifically provides that in no event may the State of Illinois require the performance of remedial action by Ecolab because Ecolab neither caused nor contributed in any material respect to a release of a regulated substance on, in or under the Evergreen Manor Site that has been identified as the release to be addressed by IEPA's proposed remedial action. Specifically, the proposed Evergreen Manor Site remedial action appears to be in response to levels of TCE greater than the MCL of 5 ppb, whereas Ecolab neither caused nor contributed to any release of TCE. Parties other than Ecolab are the source of the TCE and other contamination at the Evergreen Manor site. As a result, any IEPA request that Ecolab perform a response action would be arbitrary and capricious.

Finally, should the IEPA refuse to withdraw the Section 58.9(b) "Notice" of potential liability. Ecolab respectfully requests a detailed written explanation by the Agency and a meeting with appropriate IEPA and IAG personnel within sixty (60) days. By copy of this letter to Ms. Gobelman, Ecolab requests that this letter and the attachments be added to the administrative record.

Sincerely,

Steven M. Christenson

SMC/sfs

Attachments:

- 1. IEPA Memorandum re Warner Brake (May 26, 1983)
- 2. IEPA Memorandum re Warner Brake (Jan. 9, 1991)
- 3. Ecolab correspondence to IEPA (Dec. 27, 1979)
- 4. IEPA Correspondence to Ecolab (August 6, 1980)
- 5. MSDS for 1,1,1-TCA, Safe-Solv, Magnus #2, and Magnus #5
- 6. Traveling Requisition Forms for 1.1,1-TCA and Safe-Solv
- 7. Viking Chemical invoices for Safe-Solv (March 10, 1988 and June 8, 1988)
- 8. Solvent Systems International invoices for recycling (11/9/87, 7/15/88, 3/7/89, 7/14/89, 1/19/90, and 9/14/90)
- 9. Ecolab Air permit application (Dec. 2, 1983)
- 10. Ecolab correspondence to IEPA (Nov. 18, 1987)
- 11. CRA Report (Jan. 1997)

cc: Gerald E. Willman/IEPA
Paul R. Jagiello/IEPA
Diana D. Gobelman/IEPA
Frederick S. Mueller/Johnson & Bell
Richard G. Shepherd/Conestoga-Rovers & Associates

ATTACHMENT 1

DATE:

May 26, 1983

TO:

Division File

FROM:

Pamela D. LoPinto

SUBJECT:

Winnebago County LPC 20104010 Roscoe/Warner Electric Brake

This memo details investigations made of industries east of Hononegah Country Estates. Investigations were conducted to gather information regarding the types of waste materials generated and disposal methods utilized.

May 9

Economics Laboratories, Stateline Foundry, and Rockford Manufacturing Group were all visited. I was told by the receptionist at Economics Labs that no chemicals were handled. At the foundry I was told only Stan Christianson, President, could help me and that he was unavailable until May 16th. At RMG I was told to call Dick Alcock for an appointment.

<u>May 11</u>

I toured RMG with Dick Alcock. The small shop makes wire drawing machinery. Alcock showed me a letter from Mike Bacon dated 5/6 indicating that RMG's well contained 2 ppb 1-1-1, trichloroethane, 28 ppb trichloroethylene and 1 ppb tetrachloroethane. Eight drums of paint and thinner were stored, closed, on pallets outdoors. Two tanks of Stoddard solvent were observed - 10 gallons and 30 gallons. The 10 gallon tank is recycled monthly by Safety Kleen. The 30 gallon tank hasn't needed the solution changed. Alcock had Frinks sample the 8 drums two weeks ago and is also considering EWR for waste removal. I told Alcock that if the material in drums was hazardous he has been storing illegally.

May 12

Ken Bardo and I visited Forest City Gear, RMG, John Deere, Anderson Marine and Thelma Meuret's residence to deliver water sample results. At Forest City Gear it was suggested that we investigate Economics Laboratories further as the previous owner - Cleansaid - had used underground tanks. At RMG we met with Alcock and sampled two of the eight drums stored outside. Sample #1 was taken from a drum containing green paint on the bottom, clear liquid in the middle and a rust colored liquid on top. Sample #2 was taken from a drum with green paint on the bottom, oil in the middle and clear solvent on top.

We visited Economics Lab and met with Tom Grezek. Grezek said that Cleansaid sold the property in 1961. In 1975 the underground tank containing diesel fuel was emptied. Grezek knew of no other underground tanks. This facility manufactures cleaning systems for the food industry and uses 1,1,1-trichloroethane in vapor degreasing. We observed the open-top degreaser and one drum of sludge inside the plant. The solvent is recycled within the system and sludge is sent to McKesson Chemical. The outdoor underground tank area was inspected.

RECEIVED

JUN 15 1983

E.P.A. - D.L.P.C. STATE OF ILLINOIS

IL 532-0570 EPA 90

IEPA-WBM 0014

Ken and I proceeded to Regal Beloit where taps and dies are manufactured. We were told to call Mike Tate for an appointment.

May 17

Ken and I met with Mike Tate and two other gentlemen from Regal Beloit. The following information was gathered regarding materials used in the production of taps and dies:

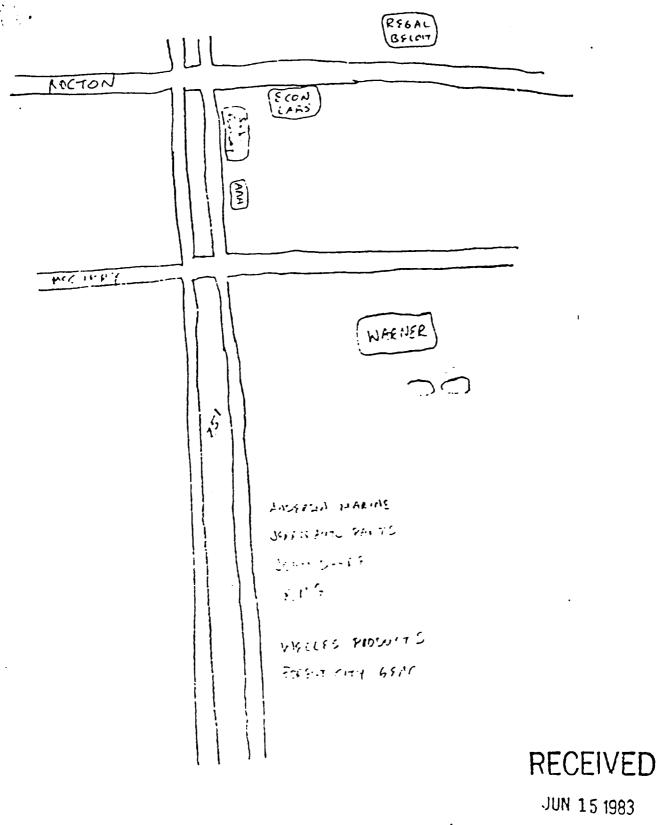
- 1. Water soluble coolant is stored in an underground tank outdoors.
- 2. Grinding oil and coolant are filtered on site for reuse. The resultant sludge is stored in an AAA box for disposal. Approximately 10 yards/2-3 months are removed. During our visit drums of sludge were being emptied into the box. We were told that the sludge had been in storage because, while it was once marketable, it now must be land-filled and a permit had to be obtained.
- 3. 1,1,1-trichloroethane is used in degreasing prior to heat treating. In February of 1982 approximately 12 drums of trichloroethylene were removed by Safety Kleen so that the new solvent (1,1,1-trichloroethane) could be utilized. The drums were stored inside for a short period of time. No degreaser waste is generated now as the material is recycled. The vapor degreaser holds 2-3 drums of solvent.
 - 4. Naptha spirits are used for cleaning and are recycled by Safety Kleen.

Ken and I suggested to Regal representatives that they have their water tested for volatile organics. Neither Ken nor I felt that this plant had any waste management problems.

As of the date of this memo Stateline Foundry and Armor Specialty have not been inspected. To summarize my investigations and previous investigations by Ken Bardo, there was no evidence of chlorinated solvent mismanagement at Forest City Gear, RMG, John Deere, Anderson Marine, Economics Labs, Regal Beloit, or Welles Products.

PDL:svf

cc: Rockford Region


-Heidi Hanson

-T. Cavanagh

-Sherry Otto

-M. Nienkerk

Attachment: Sketch

 \subseteq

3

JUN 15 1983 E.P.A. — D.L P.C. STATE OF ILLINOIS

ATTACHMENT 2

the state of the state of the state of

HEHORANDUH

Date: January 9, 1991

To: Terry Ayers, FSMU

From: Paul E. Takacs, FSMU

Subject: L2010400010 -- Winnebago County

Warner Electric -- Roscoe Superfund/Technical Reports

This is to document conversations between myself and Bill Buller of USEPA-RCRA Enforcement in Region V concerning recent sampling of residential wells adjacent to the Warner Electric Site.

The Warner Brake & Clutch Company is located at Highway 251 and McCurry Road in Roscoe, Illinois just north of Rockford. This Site occupies approximately 94 acres and an estimated 7,000 people obtain drinking water from public and private wells within a three mile radius of the Site. Warner Electric has owned the Site since 1957. Substances which were used or generated at the facility include trichloroethene, methylene chloride, 1,1,1-trichloroethane, toluene, paint sludge and epoxy catalysts. The sources of contamination are widely believed to have been two on-site lagoons as a part of Warner's "sanitary wastewater treatment process".

In 1983, IEPA tested residential wells in the Hononegah Country Estates and Moore Haven subdivisions, located about 3,000 feet from the sources. This testing revealed TCE levels of up to 5,700 ppb that as well as significant concentrations of 1,1,1-TCA and trans-1,2 As a part of an agreement with the Illinois dichloroethene. Attorney General, Warner Electric began providing bottled water to 🚉 the affected homes and in 1984, constructed a community water All residences in what had been defined as the supply system. plume area were given the opportunity to hook up to this system. In addition, Warner agreed to remove approximately 16,000 tons of contaminated waste materials from the two on-site lagoons. ... The lagoons were then backfilled, capped with one foot of compacted in the compact of compac clay and revegetated. With this source removal, it was expected that VOC concentrations within the 1200 foot by 6000 foot plume would decrease.

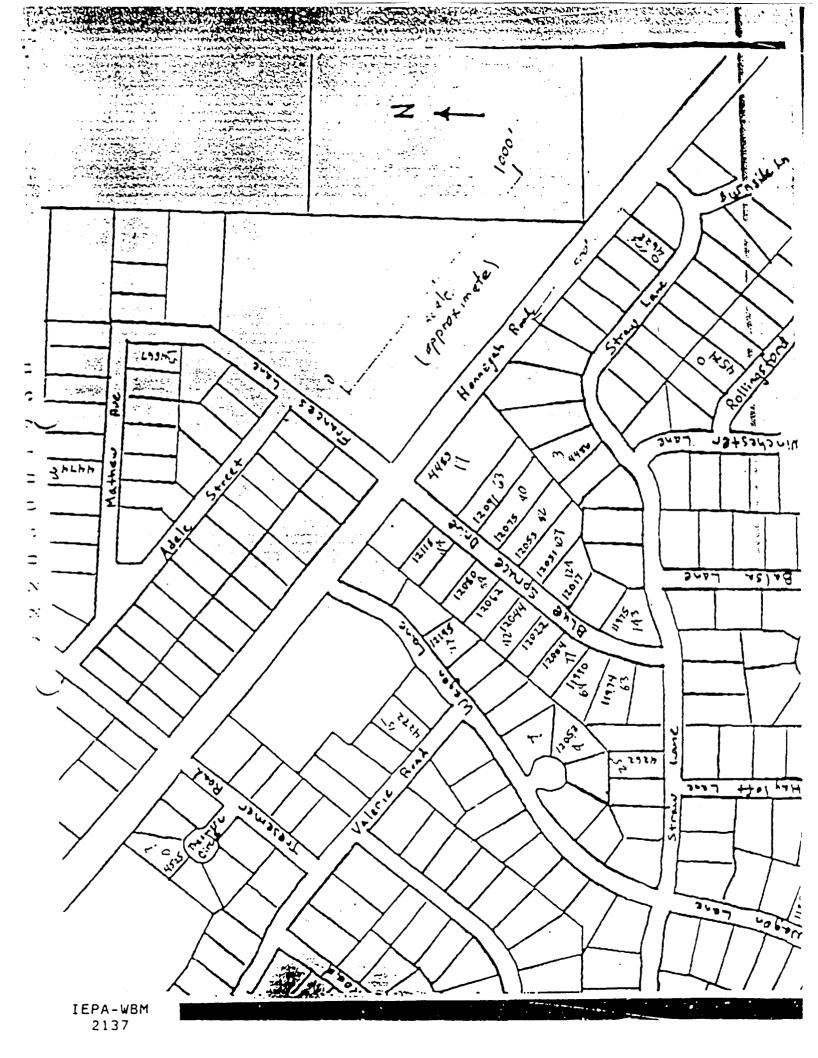
As contaminant levels remained nearly constant, USEPA pursued Warner to conduct an RI/FS pursuant to SARA after the Site was listed. It was decided to give USEPA the lead agency role since the former agreement between the Attorney General's Office included a covenant-not-to sue stipulation. Stating that the problem had already been addressed, Warner proposed to Region V that the Site

∴

2.

either become a state lead Superfund site or that the Site should be deferred to RCRA. A 3008(h) order was executed on January 2, 1990, and the Site was taken off the NPL on August 30, 1990. The State was not a party to this agreement which called for pumping and treatment of contaminated groundwater only. IEPA was requested to comment on the Corrective Measures Plan, however since Warner had not submitted a post-closure permit application or an equivalency demonstration (see July 6 memorandum), a review was not possible.

On January 8, 1991, I was notified that the adjacent Evergreen Subdivision southwest of the plume area (see attached map) had been tested by IDPH on December 11. The results showed very high levels of TCE (averaging about 27ppb; 75ppb max.) and 1,1,1-TCA. Significant amounts of 1,1 DCE, 1,1 DCA, c-1,2 DCE, 1,1,2-TCA and PCE were also detected. USEPA's Superfund Emergency Response Unit was scheduled to have completed further testing at the nieghborhood on January 4. Roger Ruden of IDPH will hold a meeting on January 9 to explain IDPH's results to residences that had been tested.


Groundwater flow paths had been established between the source area and the Rock River. The indications were that groundwater flows in a southwesterly direction (Wehrmann, 1984). When the study was completed, the Evergreen Subdivision had not yet been fully occupied and further residential development in this area was not considered. The Evergreen Subdivision with over 600 homes could have caused a cone of depression significant enough to have pulled contaminants into the neighborhood. Although similar contamination exist at the Warner Site, a flow path which considers heavy usage of groundwater at the Evergreen Subdivision must be considered. The possibility that similar waste found at other locations should also be studied, however it would be difficult for IEPA to enforce any investigation on Warner since IEPA is not a party to the 3008(h). I would recommend close coordination with USEPA in this matter.

Attachments: Sample locations and results

cc: Bob Wengrow
Tom Long, IDPH (w/o attachment)
Roger Ruden, IDPH (w/o attachment)
Stan Black (w/o attachment)
Greg Michaud
Paul Jagiello
Jim Janssen
Charles Zeal
Gary King
Bill Child
Division Pile

Figure 1. Area of investigation.

				l, l Cis I,			Trie			
11. 44.,	Trichloroethane			Dichlorosthane 2 Dichloroether		Dichloroethene	yloro ethylene	13 14 6	4 Person - Quent dation up qualable	4
		1,	28		N	u	52	March	12080 Blue Syrute	~=
			27	5	N	2	54	Whitley	12075 Blue Sprace	2-11
		7	19	4		_	20	Canfield	tab 12062 Blue Sprace	ا ا ا
	 •	5 7	25	4	_	N	50	Pageni	12053 aluc Spruc	1 = 2
	<u>'</u>	컨	3	7	N	w	52	Nelso.	12044 Blue Sprace	11.11
	٦,) 	18	5	ω	N	63	miller	12001 Blue Sprace	5 2-11
	•) اتر	140	7	ω	5	69	McIntest	12017 Blue Sprace	1-1-1
		3.	27	3	Ŋ	2	40	Fox.	1200Y Blue	11-51
7		===	ટક	3		N	39	Mitchell	11110 Blue Sprace	12
	7	7	52	6	5	5	75	wiersbe	11975 Blue Socie	2-11
		<u> </u>	25	¥	*	A .	38	Beration	11974 Blue Sprice	12-11
3			3				2	Hanri.	Che Aldress	\$
		•	77		41.00	Dine	2	and the same of the same	- 1 - 11- 10	1

IntoT 66 8 9 2 2 2 - 6 89 124 (drbd) Tetrachleride 3 OHIST J.O.C. 3 TE the de materials E Trichlocolhane F ۴ ۲ F m <u>|</u> 111 25 S JustomitaisT 52 25 E 7 28 40 34 27 - m 517 Dickloracther S S 5 7 1 n 7 m 4 Dichlorothane 7 N 4 'n N $\boldsymbol{\omega}$ M Sastts esolds: a 4.25. Blue : M N 3 N 2 S 5 M Υ Trighton of hylene 54 200 52 38 23 50 69 63 75 7 40 Berym Miller Weershe Nelso. Uritley Mc I.405 Canfield March 쟋

IEPA-WBM 2139

Darried	12.11-90	•		7.1	Sprice		. A.C.K.		
Cac	Aurass	Comeria	3	•			3		
201	12091 Blue Sprice	8-11	43	A	*	5	51		
12:1	12119 Blue Sprace	J.L., (5, 4,)	55	ω	N	6	28	プ	
() () () () () () () () () ()	4483 Humanah	Ranieczski	12	1	な		4		
12-11	McKen Ac	Brideyan	22	3	צ	W	34	7	
€ 12-11		Canvec	34	1	-	5	'15	゙゙゙゙゙゙	
\$ 12-71	4574 Rollingford	mc 6:11	1		1	1	-	١	
الدارية	4262 Strew L.	Rhides	9		1	1	14	1	
2.22	4486 Straw La	Russel And	3	1.	•	ı	て	1	
200	4629 50000	Cox	-	1	1	1	-	ı	
	4225 Tresemer Cink	Let 2	1,	1		_)	l	·
2-11	4282 Valerie	Burlow	5	1	て		0	1	
* Court	المدامسة حمد مراجعها المالية	0 12 74-40	loroethylene	Dichloroethane	D: chloroethane	1,2 Dichluroethere	Trichinochene	Trichloroethane	
			Trie	1,1	١,١	Cis	1,1,	1,1,2	

	Omer's		Blue	1			T			1	T				1	F
	Hame	78	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			272			<u> </u>	m	<u> </u>			200	ļ	E
e	8-11	43	*	×	5	15						<u> </u>	<u> </u>			E E
	Johnson	55	3	2	6	28	Tr									94
:	Ranicezski	12	_	Tr	= 1	4	111	4		Tr						17
	Drileyan	23	3	2	3	34	Tr	, • . • .	4	2						Ğ6
: عد	Camprec	34	11.00	10 m m m m m m m m m m m m m m m m m m m	5	15	Tr			1						Ğ6 \$7
	Me Gill	-	- 100 mg/s	<u>-</u>	-	-	-	•		_						``c
	Rhodes	9	12	1	1	14	-			1 -					"	25
	Russel And	3			8.1	Te					9					3
	Cox	W-	W-	-	1-1	1-1	1-1			1	-	1		1	1	
Cinh	engret :	\ -	120	-	\ <u>-</u>	11-	W-			11-		779 1940 - 1945 1941 - 1945	1		\mathbb{I}	1-1
	Burlow	5		Tr		10				-	-11					1
1.1	le 12-24-90													-		
J41184		` ∏ -	1		D.c. Lynethere	4		-			: - 					
	*• * *	- -	ore drayleuc	The state of the s	1 6	Tricking diane	Trilland Hose				Tetrellow of lane			- ∦.	∭ز	
		-	Nore draylene		1		8			- 11	4		1		7.0.0	
ر		=	5 =			11 7				\parallel	3			- 11	11	==
_		_11.	2	2 2	2 -	-11-		<u> </u>	<u> </u>	_	<u> </u>				10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 =	== .
						_	, TE	/			F			- 11	3	ll l
		- 11		-	-	-11	11 -	‡	1				•	-		-
					الجيز	. د					\parallel					
		- 11				ر ال				- 11	- 11		- 1][

		41	1 '	1	<u> </u>			<u>-l</u>	-1		<u> </u>	-1		
			-		_			_	-	_				
Į.		1					-	-	-		<u> </u>	_	عدعماته ١١٥١٨٠:٦٢	2'1'1
e Acer	E	٨	22	3		-				7.				1,1,1
Stree		,	+	,						-	1		1,12 Dichlorocthene	5:0
Blue	14	,		۲							-		Dichloro cthane	1 1
· ;	* *	.,		Ī				123					Dichloroethene	11
	£	1	15	п						8	1		Sustythenel	N:T
	Name 2	Linglen	Garcia	Beich				The second secon		Rhules	(80.2)	4)		
12-11-90	Adass		12145 Wagen Ln	12053 Wayne Lie	The second secon			The state of the s		4262 Som La	יים אירון ועצוי		1	
Plch	3	1000					4	1 () () () () () () () () () (7.1 1.1 1.1					
S	1	2 1127.00	22.5	11-71					2	17 = 7	11-31-7		1 . 1 2 3 4 - 4 4 5 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

	(.		1,	١		*				10+	7.	5		
			(810.2)	Rhodes	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		The state of the s		2 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Beach	Garcia	Linden	H. S.	>
Trie	Horoethy fene		1	∞			1			ω	15	增	3	
1,1	Dichloroethene		g_{i}				14.74 T			1	•	14	彩	
1,1	Dichloroethane		72	1	P.A.		134		13 c	ᆉ	*:	序	75.5 1.5	3
Cis	11,2 Dichloroethene		inj.	- 	\$ 6 \$ 7 \$ 7 \$ 7		. \$; . \$;			1	+		***	
1,1,	Triblino othere		1	15		19				6	22	N	3	
1,1,2	Trichlers emane			1			,			1	1	1	112	
ि र्वे र िक्ष १९४७					:				¥	13		1. 1	7.35 7.1	1
· ·	A SAME													
TE	tradilorestylane		e.		HA.	<u> </u>				1		1	3	
•		,	19 (19 m) 19 (19										A WANTER	
Of	er uo.c.								<u> </u>				3	
													:	
To-	tal R.P. Bamasan	.'Aż	Para	24	A COLUMN	g. Nga fan	n Min	gest, Surv	:4.0x	sinkrit _O	elew?	μ*	יישביי	23

ATTACHMENT 3

ECONOMICS LABORATORY, INC. OSBORN BUILDING. ST. PAUL, MINNESOTA 55102

December 27, 1979

Mr. Charles E. Corley, R.S. Illinois Environmental Protection Agency 4302 N. Main Street, P.O. Box 915 Rockford, Illinois 61105

Dear Mr. Corley,

Per your request, attached is report describing area, amount and procedure of sludge and contaminated soil removal from our South Beloit manufacturing facility.

This work was done per the recommendation of the IEPA, Division of Water Pollution Control.

Sincerely yours,

ECONOMICS LABORATORY . INC.

Walfrid Ashlie Johnson Project Architect

WAJ/mc

enclosure

ECONOMICS LABORATORY, INC.
South Beloit, Illinois/Sludge Removal

At the recommendation of the Illinois EPA, Division of Water Pollution Control, sludge and contaminated soil was removed from the abandoned waste lagoon at Economics Laboratory Incorporated's South Beloit manufacturing facility.

The material was removed to Browning-Ferris Industries' Davis Junction disposal site. The licensed waste hauler was Rockford Sand and Gravel, who had on the job two equipment operators and supervisor. The work was accomplished with a front end loader with five cubic yard bucket, small dozer and trucks to remove material. Manitest procedure worked out between Browning-Ferris and IEPA allowed use of one manifest form per truck per day instead of the normal procedure of one manifest form per truckload of material.

Records were kept of each truckload of material removed, size of truck and waste hauler's license number for each truck. These records were reconciled with the hauler's truck count and with the manifests at the end of each day. Completed manifest forms were sent to IEPA as required.

A total of 1,884 cubic yards of material were removed at a cost of \$30,144.

The material was removed from the areas indicated on the attached drawing. The material removed from "area A" consisted of a mucky sludge to a depth of approximately 4-5 feet at it's deepest point, to a depth of 6-12 inches at the end of the long finger. The material was contained by a bentonite liner. This sludge material was removed, including the bentonite liner, and approximately 6-12 inches of soil below the bentonite liner.

The material removed from "area B" consisted of a dry powdery residue of material mixed with the natural gravel of the area. This residue material was at the surface of the soil. In order to remove this residue material, the area shown was scraped to a depth of 6-12 inches and the material removed.

IEPA personnel were requested to inspect site of sludge removal with approximately 2/3 of sludge removed on 12/3/79 and again on 12/4/79 with sludge removal complete (except for piled contaminated soil removed 12/5/79). Samples were taken of both the original mucky sludge material and a representative composite sample of the soil to remain. (Note that representative composite samples of soil to remain were taken both days. The first such sample should not be used since additional material was removed from the areas where the sample was taken.)

The initial inspection was to get IEPA reaction and comments on work already accomplished and to define limits of contaminated soil to be removed. The second inspection was the final inspection after all contaminated material had been removed to Economics Laboratory, Incorporated's satisfaction.

Future use of the area where the sludge was removed has not been determined. However, pending further IEPA recommendations, Economics Laboratory, Inc. would like to consider the option of rerouting waste water system discharge from new settling pond back to area where sludge has been removed. Also, Economics Laboratory, Inc. intends to regrade this part of the overall site to improve drainage patterns and level site for possible future construction.

CARD TYPE	DATE 7-23-79 L PS N C AUTHORIZATION NUMBER 19/123 TRANS CODE TA (Agency Use) TS TE / TS TE / TS TE
	WASTE HAULER
1 6 7	HAULER REGISTRATION NUMBER NAME BROWNING FERRIS INDUSTRIES
<u>s</u> 7	ADDRESS 1827 WALDEN OFFICE SOURCECOMMUNITY SCHAUM BILEC
	COUNTY COOK STATE 107 LN95 AREA CODE 3/2 TELEPHONE 397-7760
	WASTE GENERATOR
$\ell_{\prime-}$	GENERATOR CODE G NAME ECONOMICS LABORATORY 25
£	ADDRESS OPERATIONS BUILDING COMMUNITY ST PAUL
	COUNTY STATE MN ZIP 55102 AREA CODE 612 TELEPHONE 224-4678
小.	• •
" من ري	GENERATOR CONTACT NAME WALLACE JOHNSON
· 20	
$\frac{2}{6} \frac{0}{7}$	PROCESS NAME LAGOON CLEAN-UP
$\overline{}$	WASTE CHARACTERISTICS
	GENERIC WASTE NAME CONTAHINATED SOIL
4 0 6 7	1UPAC WASTE NAME
	TOTAL ANNUAL WASTE VOLUME $\frac{4000}{51}$ VOLUME UNITS $\frac{1}{61}$ WASTE PHASE $\frac{2}{67}$
	TRANSPORT FREQUENCY $\frac{1}{60}$ WASTE CLASS 1 = CUBIC YARDS 1 = SOLID (Agency Use) $\frac{1}{54}$ $\frac{1}{60}$ 2 = GALLONS 2 = SEMI-SOLID
	1 = ONE TIME 5 = MONTHLY 3 = L1QUID 2 = DAILY 6 = BI-MONTHLY 4 = GAS .
	3 = WEEKLY 7 = QUARTERLY 4 = BI-WEEKLY 8 = SEMI-ANNUALLY
	(Code either "1" for Low, "2" for Medium, or "3" for High as appropriate for columns 21 through 26):
5 0 7	INHALATION DERMAL INGESTIVE
6 7	TOXICITY $\frac{1}{21}$ TOXICITY $\frac{1}{22}$ TOXICITY $\frac{3}{22}$ INFECTIOUS REACTIVITY EXPLOSIVE $\frac{2}{26}$
	FLASH POINT $\frac{200}{37}$ ALPHA RADIATION $\frac{1}{31}$ COMPOSITION $\frac{1}{37}$
$\overline{}$	1 = ORGANIC 2 = INORGANIC
	PERCENT
	PERCENT PERCENT TOTAL PERCENT ACIDITY ALKALINITY AND SET SOLIDS 48.3 ASH CONTENT ST. ST. ST. ST. ST. ST. ST. ST. ST. ST
$\frac{6}{6} \frac{0}{3}$	
6 /	TO CONTAMINATED SOIL 48.3 2 HOLSTURE 50
	$\frac{3}{27} \frac{4}{72} \frac{4}{70} \frac{4}{47} \frac{4}{49} \frac{4}{49} \frac{70}{70} \frac{7}{71} \frac{70}{70} \frac{7}{71} \frac{70}{70} \frac{7}{71}$
	5 71 72

CONFIDENTIAL

E.P. C. - C. F. C. Strick of the Control of the Con

						(e= de in				12 * 14 * 14 * 14 * 14 * 14 * 14 * 14 *		(بب					
- CARD TYPE	DATE			<u>Ļ P S ₩ Ç</u>	AUTHOR	1ZATION	NUMB	ER _			TRANS CODE	14	DATE I	ENTERED y Use)	18	/ ₁₇	 / .	19 30
									RACTERI									
70	META	LKEY	TOTAL	(PPM) LEACH	<u> </u>	PPH)	METAL	KEY	TOTAL	(PPM	<u>) LE</u>	ACH	(PPM)				
• ,	CN Ag			L ·								-						
	As			<u>0</u> .														
	Ba																	
	Cd			<u>-</u>				Se										
	Cr														• •			
	Ci	<u> </u>		11&	<u>.</u>			Zn						Q.1		-		
														- •				
2.2	1 400			100	'		- - -							- -	•	:		
$\frac{8}{6} \frac{0}{7}$	LABO	DRATORY	NAME	AQU. GER 411	& L A	₩	<u> </u>	<u>e</u>						پهست <i>ت</i> ون	3	(00	177.00	
	CERT	IIFICATI	משטא אסן	SER 41				_ ভ	REYII	ENED BY:	51 7	7/ /	¥-,	56			<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
9 0	<u> </u> 21	SITE	ODE 1	411	? <i>Z</i>	0 1	SITE	NAME _	DAY	<u> </u>	TUNC	70	NI	BF1			•	•
		DISPOS	SAL METI	START DA	/ NE	UTRALIZ O O 2	ATION	KETHOD ~ O	32 3	<u>.</u>	C	8	27	80				
$\overline{}$		STATU:	$\frac{1}{34}$	START DA	TE U C	$\frac{5}{6}$ / $\frac{2}{37}$	(\(\frac{7}{\omega} \frac{9}{40} \)	EXP	1RAT 10N	DATE	42	43 44	. / 45 - 4	6			
		SIGNA	TURE _	Malee (SIT	E OWNER)	Pici	/- -		SIG	NATURE		SITE (PERATO	R)				
	2										`			,				
	21			HOD -											-			
		STATU	c	00H	TC	,	,	12 Indi	<u> </u>		DATE		,	,				
				START DA	35	36 37	38	29 40	£	1641104	DATE -	1 42	43 44	- / 45 4	16			
		SIGNA	IUKE -	(511	E OWNER)				210	NATURE	(SITE	OPERAT(OR)	_			
	3	SITE	C00E _				SITE	NAME .							_			
	21	01520	SAL MET	HOD 30 3	NE	79 [UTPAL]	ZATION	L METHO	o	_					•			
				START DAT						i3 IRATION	DATE -		/	_ /				
		SIGNA	THINC				38 :	9 40	\$10	NATURE	7	1 42	43 4	45	46	•		
			•	(\$1	E OWNER	<u> </u>		_				SITE	OPERAT	OR)	_			
	4 21	SITE	CODE	77 ·		- 29	SITE	NAME										
		01520		00HT														
		STATE	بر کا	START DA	TE 35 7	<mark>, /</mark>	<u> </u>	29 40	£X	PIRATION	N DATE	47	/	<u> </u>	46			
		SIGNA	ATURE	(51	TE OWNER	·				GNATURE			OPERAT		_			
	5	SITE	CODE										J. 2.4.1	,				
	5 21			72 — —					00						_			
				THOD JOHT						33 PIRATIO	N DATE		,	,				
			ATURE	START DA	<u> </u>	₹ ' 3 7	38	39 40		GNATURE	N DATE	41 42	· 43 7	45	46			
		31011		751	TE OWNER	·			21	UNATURE		75115	OPERAI	OB)				

Boundy SIS NO.1

7486

BROWNING FERRIS INDUSTRIES P. O. Dox 35 Rockford, Illinois 61105

ATTENTION: Mr. C. M. (Skeet) Atkinson

ine aranyus u

June 12, 1979

June 12, 1979

Jane 12, 1979

SAMPLE DESCRIPTION: Economics Lab Soil

Parameter	Analysis, ppm	Leach, ppm
·Arsenic	0.23	
·Cadmium	1.50	
·Chromium, total	118	
·Copper	14.4	•
·Cyanide, total	1.36	
-Lead	42	
Mercury	0.23	
Nickel	12	
рН	\$.2	
Zinc	155	ppm on dry well
%Total Solids	• 48.5%	
Flash Point	21297 No Flash - No	Boil

Larry McAmarney, Laboratory Supervi

ATTACHMENT 4

Hinois Environmental Protection Agency

AUG 0 8 1980

P.C. Bux 919 Backford, 1 - 61109

August 6, 1980

ECONOMICS LABORATORY INC. - South Beloit
Plant Wastewater Sludge Removal

Economics Laboratory, Inc. Osborn Building St. Paul, Minnesota 55102

ATTENTION: Walfrid A. Johnson, Project Architect

Dear Mr. Johnson:

Recently we received all of the waste sludge and lagoon area solids analysis and reference material on whole soils analyses for comparison purposes. We are enclosing copies (all labeled) of the solids and sludge samples collected from the South Beloit Plant site during the cleanup operation in December 1979.

After reviewing the analytical data, it appears that the wastewater sludge was adequately removed from the lagoon site. Based on a comparison of the analysis of the remaining base soil with the concentration of elements shown on the enclosed chart, the area soil is well within the "usual range." We would conclude from the above that the former lagoon site could be used by the company for future expansion of the parking lot or plant buildings. The area could also be returned to its original condition. However, if the company wishes to use the area for storm water or wastewater seepage, we would recommend that you collect and analyze deep soil core samples in the area.

In regards to the existing cooling water discharge from the plant, we are enclosing an application form for a National Pollutant Discharge Elimination System permit and appropriate instructional information.

If you have any questions or comments concerning this letter, please feel free to contact the undersigned, or C. E. Corley of my staff, at the address above.

Sincerely,

DIVISION OF WATER POLLUTION CONTROL

Harris J. Chien, P.E.

Manager - Region 1

Field Operations Section

HJC/CEC/bjs

cc: -Region 1

-DWPC/FOS/Records Unit

-Bob Wengrow/DLPC

	SPECIAL AMAIN'S DE TORM	
: Sollested 4 for Pall.	Sub-Basin Coch	
: Collected 3 Troc 1979	Collector ()	122 641
Hity Name: Commons (S	the Sumber: File Town	W. Belief
ram Kame (s)	Strong Co	ode:
ree of Sample: (Exact Location)		
Soil Sounds Li	ing Lorens ar Livesti	Large dragger 1
	a Percenter	
% signal Chemryntions, Remarks:		
	er is so harman so tallah fill	· ·
,		
y Field bicsolve	1	Field Team.
5.8 (Arachie)	Coliforn/10Cul	ROD
190. (Barium)		00
Boron	Fecal Strep	TS/NC
2. fladmium	Algae (Total) /ml	Susp.Solids
23. (Copper)	Astronia (X)	Vel.Nurp.Solids
(September 1 mile)		<u> </u>
28 Chromium (France)	Nitrate + Nitrite(W)	Turbidity (JTU)
17605. (Iron (Total): 5	#40. Theosphorus (P) .	Hardness
Iron (Dissolved)	Chiloride RECEIV	Alkalinity
<u> </u>	Fluoride REGION 1 D.	N.P.O. Total Acidity
3.00. (Manganese)	Sulface MAN 81 3	GOO, Free Acidity
0.21 (Mercury (pph)).	Cyznide [MARONENIA MOTE	
20. (Nickel).	MRAS SYME OF ILLE	Other (Specify)
Selenium	Phenol (ppb)	FOR LAB USE ONLY 1918
Silver Transpor		1,64 111 : 676 7,64
130 kinc . Received		ysis completed:
therwise noted. Sign		ilts forwarded: 1/1/1 1 / 1000
Received	by Total Tes	gs requested Tests run
in ungla dry with	Lub Secti	our supervisor:

ILLINOIS ENVIRONM	ENTAL . DIECTION AGENCY DIVISION OF	WR POLLUTION CONTROL
···· 02227 D	EC-6 SPECIAL ANALYSIS FORM	^
c Collected 3:00 P	1. Sub-Basin C	xt land
e Collected A Dec.	1979 collector C	" (by our
ility Namon	Facility Number: File	TOUTH BOLL
Conomics enm Name(s)		am Code: -
rce of Sample: (Exact Loc	ation)	
· Cooling (A)	ler disdrance: to per	-cilation paine
	ant lolding.	V
rsical Cheervations, Remar	9	
		1 5 1 1 1 1 1 1 1
(c) DUV '	sery bujo erson, mo	011,3610,61,01-28.
	Dissolved Oxygen Field r	Field Temp.
rie:c	Dissolved Oxygen Field r	1.16.6
Arsenic	Coliforn/100ml	300
2.0 (arium)	Fecal Coliforn	1000
Boron	400 ml Fecal Strop	
· O O (Cadmium)	100 ml Algae (Total) /ml	
, 15 Copper	0.01 (Amenda (ii)	
thromium (tri)		
sectual fromium (hex)) 4.7 (Nitrate + Nitrite(N	Turbidity (JTM)
i, 3 (Iron (Total)	0,35 Phosphorus (P)	llardness
Iron (Dissolve	d)Chloride	Alkalinity
0.03 (cat)	Fluoride	Total Acidity
Manganese	Sulfate	Free Acidity
Mercury (ppb)	O-O Cyanter	Gil 1 b 4 a /
1.0 Cickei	MBAS	0.29 Wher Opecity
Selenium	Phonol (ppb)	<u> </u>
Silver	Transported by: Lah ;	TOR LAR INTO ONLY
0.2 (inc)	Received by:	sample rec'd: 12-6-74 Time: 12-6-5.
esults in mg/l unless	· · · · · · · · · · · · · · · · · · ·	results forwarded: 12-24-79
therwise noted.	Received by Tota	l Tests Physiced: 5 Tests run:
	110001 1000 07	Section bracon Super Dor:
		V minera

	SPECIAL ANALYSIS FOR	Н	
collected 3.05P	Sub-Basi	n Pocketind	
Conomics haborative	Collecto: Kumber:	File Town South	Rolo:1-
m Name(s)	1	Stream Code:	·
e of Sample: (Exact Location)			
Soils sample +	www forman 1	wastersafe	10000
site - bare foil	remaining atte	- Consolate C.l.	Con with
Ecal Observations, Remarks:	J	t	1
	51 (4	A lalat Carl	
- STARY THE WINDOW	-aren foil trem	<u> </u>	
Field Dissolved	Охудел F	ield p‼	Field Temp.
7 (Arsenic)	Coliferm/100ml		BOP
Barium	Fecal Coliforn		C 0:)
Boron	100 ml Fecal Strep	<u></u>	TS/EC
(0.5 Cadmium)	100 ml Algae (Total)		Susp.Solids
6. Copper	Amonia (?)		Vol.Susp.Solid
Chromium (tri)	Organic Nitros	gen (N)	ni (units)
13. Chromium (10 Trac	Nitrate + Nitr	rite(N)	Turbidity (JTU)
8300. (Iron (Total) 382	O. Prosphorus (P)	<u> </u>	
Iron (Dissolved)	Chloride	· · · · · · · · · · · · · · · · · · · 	Alkalinity
6. (Lead)	Fluoride A	nalytical res	ultisti neglicity
ada. (Manganese)	13 8 Sulfate Qa	36491 Neces	ultred Totally Constituted from Acidity
0.18 (Mercury (min)	Cyanide	1	Oil
G. Nickel	NBAS		Other (Specify)
Selenium	Phonol (ppb)		AB USE GNLY
Silver Transport	ed by: VIJIV	1	7/ Rec'd by
75. Pinc Received	эу:	1	d: 12/12/29time:
sults in unless Transport	ed by:	Date results for	mpleted:
therwise noted. Received	by:	Total Tests requ	ested: Teste run
		Tap My compai	Au Super-vi Bale 73
LAB-3 3/73 (Diplicate hind form. So	Jon: that 12 May 1960)		······································

Table 6. Element variations in soils, the lithosphere and rock (in ppm of dry material) 1

	Soi	lls		Rock Composition					
Element	Average	Usual Range	Lithosphere Average	Igncous	Limestone	Sandstone	Shale		
Р		400-3,000		1,300	193	386	. 817		
S	850	100-1,500		900	8,000	2,200	1,100		
i e		14,000-40,000	•	40,600	. 13,000	31,000	45,000		
.11		, , , , , , , , , , , , , , , , , , , ,		90,000	4,700	28,000	20,400		
My	859	200-3,000	1,000	1,000	1,300	385	•		
٥n	50	10-300	80	S0	4-20	5-20	50-300		
Cu	20.C	2-100	70.0	70	5 - 20	10-40	30-150		
3	10.9	2-100	. 10.0	13	13	155	130		
Mo	2.0	0.2-5.0	2.3	1.7	0.1-0.5	0.1-1.0	1.0		
Co	s.o*	1 - 40	40	13	0.2-2	1-10	10-30		
Ea	500	100-3,000		6.10	20-200	100-500	:300-60a		
Cr	200	5-1,000	200	117	·	10-100	100-400		
F	200			660	61.	290	590		
Se	0.01	0.1-2.0	0.09	0.09	0.1-1.0	1.0	0.5-1.0		
I.	100	20-500	150	90	2-2()	10-60	. 50-300		
.\5	5.0	1-50	5.0	2.0-5.5			5.0		
Вe	6.0		6.0	4.2	, <1	<1			
3i	<1.0		0.2	0.22		0.33	•		
Cd	0.5	0.01-0.70	0.13	0.13			0.3		
Cs.	5.υ	. 0.3-26	3.2	7.7	**		13.2		
iis Li	0.03	0.03-0.3	0.5	0.06	0.03	0.05-0.1	0.4		
	50	5-200	63	· 50	2-20	7 - 29 ·	50		
Ni	ះ្	S-500	100	100	3-10	2-10	20-100		
Pb	10	2-200	16	16	5-10	10-40	20		
Sb				0.30		1.0	3.0		
							7:11:		

REGION 1 DWG. A.C.

JUL: 0.0 1985

ERVIEOREZENTAL PROFESTION JOHNOL STATE OF ILLINOIS

¹ Swaine (1955); Rankama and Sahama (1968); Wedepohl (1970); and Hawkes and Webb (1962).

ATTACHMENT 5

HYDRITE CHEMICAL CO.

2655 N. MAYFAIR ROAD MILWAUKEE, WISCONSIN 53226 414/257-2300

CERTIFIED MAIL
RETURN RECEIPT REQUESTED

January 14, 1984

Economic Labs P.O. Box 1018 South Beloit, IL

53511

Attn: Jan Nastasi

In the interest of worker safety, and in compliance with the Wisconsin's "Employee's Right to Know Law" (effective December 1, 1982), we have enclosed copies of the #following Material Safety Data Sheets:

lll Trichloroethane

(PP81)-CS-2008 (VU82-2)-CS-2008

These Material Safety Data Sheets contain necessary information about product hazards and proper handling. This data relates only to the specific material designated and does not relate to its use in combination with any other material or process. In those cases where the Material Safety Data Sheet is stamped "Distributed by Hydrite Chemical Co." the information is that provided solely by our primary and secondary suppliers. Hydrite Chemical Co. believes that the factual data contained in the enclosed sheets are correct. The opinions expressed in them are those of qualified experts regarding the results of tests conducted; however, since conditions of use are outside our control, they are not to be taken as a warranty or representation for which Hydrite Chemical Co. assumes legal responsibility. This information is provided solely for your consideration, investigation, and verification.

The "Employee's Right to Know Law" requires all Wisconsin companies to post a notice as outlined in Wisconsin Administration Code Section 101.581 providing specified information to employees, employee representatives and employers. Whether your Company is affected by this law or not, Hydrite Chemical Co. strongly urges you to provide the warnings and information in the enclosed Material Safety Data Sheets to your employees, customers, handlers, people exposed to, or users of any of these products.

We would appreciate it if you would fill out and return the enclosed card to verify that you have received the enclosed Material Safety Data Sheet(s).

If you have any questions, or if I can be of service in the future, please feel free to contact me.

Sincerely,

HYDRITE CHEMICAL CO.

Lynn M. Tess

Material Safety Data Sheet Coordinator

LMT/clm Enclosures

'Material Safety Data Sheet

PPG INDUSTRIES, Inc. Chemicals Group One Gateway Center Pittsburgh. PA 15222 Chemicals PCC

Approved by U.S. Dept. of Labor as "Essentially similar" to Form OSHA-20

Second of the second	Sol do Losertiany antilar to r	JIII O301A-20		· .			
Date: January, 1931	· .	Edition: Fourt	h .	(PF	981)-CS-2008		
Chemical Name and Synonyms ,1,1-trichloroethane;	: methylchloroform	Trade Name and Synonyms:					
AS No.: 71-55-0	meetily remitororous	Tri-Ethane®	: •				
Chemical Family: Halogena	ted Hydrocarbons	Formula: CH3CC1	3				
DOT Shipping Name: 1,1,1	trichloroethane	DOT Hazard Class:		UN2	831		
SECTION 1 · PHYSIC		· · · · · · · · · · · · · · · · · · ·			** ** ** ** ** ** ** ** ** ** ** ** ** 		
Boiling Point @ 760 mm Hg:	Vapor Density (Air=1):	Specific Gravity (H ₂)	O=1):	рΗ	of Solutions:		
165.4°F	4.54	1.31 @ 25°/25	°c		6.0 to 7.5		
Freezing/Melting Point:	Solubility (Weight % in	Bulk Density:		Volu	ume % Volatile:		
-49°F -45°C	Water): Negligible	10.84 lbs./gal.	@ 25°C		100		
Vapor Pressure:	Evaporation Rate	Heat of Solution:	Appearan	ce a	nd Odor Clear,		
$@ 25^{\circ}C = 104.4 \text{mmHg}$	(ethyl ether=1): 0.35	Not Applicable	colorle	ss 1	liquid - ether-like		
SECTION 2 · HAZARI	·	<u> </u>		%	Hazard Data		
1,1,1-trichloroethane	(Stabilized)	2	uï:	100	See Below		
			or end				
	 		20215	<u> </u>			
			. 3				
SECTION 3.FIRE AN	D EXPLOSION HAZA	RD DATA		<u> </u>			
Flash Point °F (Method Used)	Flammable Limits i	n Air (% by Volume)	Extinguis	shing	Media: Water, dry		
None when tested in acc with DOT requirements.	cordance LEL: 7% See Be	low UEL: 15%	chemic	al	or carbon dioxide.		
Special Fire Fighting Procedur			/MSHA-ap	pro	ved pressure-demand		
self-contained breathing							
traces of phosgene.	azards: Vapors concentra						
can be ignited upon co							
occur at concentration	s ranging between 7-15%	by volume. De	composit	ion	or burning can or		
SECTION 4 · HEALTI	H HAZARD DATA hyd	rogen chloride	or possi	ibly	traces of phosgen		
	TLV): 350 ppm - 8-hour						
	nternal permissible exp TEL) of 450 yom for any						
Toxicity Data (1)	tent of 410 year or any	Classification (Pois					
LC _w Inhalation (rat) 8,00	0 ppm/7 hours	Inhalation: Toxic	:				
LD _N Dermal (rabbit) > 1	5g/kg ⁽²⁾	Skin/Eye Liqui		y ir	ritating to skin;		
LD _w Ingestion (rat) 10-1	2gm/kg (See Section 5)		Signific	antl	y Toxic		
Fish, LC (Lethal Concentrat	ion) Not Determined	Aquatic:					
Human Exposure Information	n/Data. See Se	ection 5	·				

SECTION 5 · EFFECTS OF OVEHEXPOSURE

This section covers effects of overexposure for inhalation, eye/skin contact, ingestion and other types of overexposure information in the order of the most hazardous and the most likely route of overexposure.

Acute: Primarily a central nervous system depressant. Inhalation can cause irritation of the respiratory system, dizziness, nausca, lightheadedness, headache, loss of coordination and equilibrium, unconsciousness and even death in confined or poorly ventilated areas. Depression of the circulatory system has been reported as a result of overexposure to Tri-Ethane®. The heart may be sensitized by Tri-Ethane®, and ventricular arrhythmia may be induced by epinephrine administration.

Liquid splashed in the eyes can result in discomfort, pain and irritation. Prolonged or repeated contact with liquid on the skin can cause irritation and dermatitis. The problem may be accentuated by liquid becoming trapped against the skin by contaminated clothing and shoes. Skin absorption can occur.

Prolonged exposure above the OSHA permissible exposure limits may result in liver and kidney damage. Tri-Ethane® has been extensively studied for cancer both in the U.S. and Europe by government, industry and academia in multiple species and biological test specimens. Recent reviews of these data by the Science Advisory Board to EPA's carcinogen assessment group concluded that there was no evidence to support the carcinogenicity of Tri-Ethane®. There is no documented evidence that Tri-Ethane® causes an increased cancer incidence in humans.

The data in this Material Safety Data Sheet relates only to the specific material designated and does not relate to its use in combination with any other material or process. The data contained is believed to be correct. However, since conditions of use are outside our control it should not be taken as a warranty or representation for which Hydrite Chemical Co. assumes legal responsibility. This information is provided solely for your consideration, investigation, and rerification.

EMERGENCY AND FIRST AID PROCEDURES:

Inhalation: Remove to fresh air. If not breathing, give artificial respiration, preferably mouth-to-mouth. If breathing is difficult, give oxygen. Call a physician.

Eye or Skin Contact: Flush eyes and skin with plenty of water (soap and water for skin) for at least 15 minutes, while removing contaminated clothing and shoes. If irritation occurs, consult a physician.

Ingestion: If conscious, drink a quart of water. DO NOT induce vomiting. Take immediately to a hospital or physician. If unconscious, or in convulsions, take immediately to a hospital or physician. DO NOT give anything by mouth to an unconscious person.

Notes to Physician (Including Antidotes): NEVER administer adrenalin following Tri-EthaneS overexposure. Increased sensitivity of the heart to adrenalin may be caused by overexposure to Tri-EthaneS.

Stability: Stable	Conditions to Avoid: Avoid open flames, hot glowing surfaces or electric arcs.
Hazardous Polymerization: Will not occur	Conditions to Avoid: None
Incompatibility (Materials to Avoid): Avoid oxidizing materials. Shock sensi	contamination with caustic soda, caustic potash or tive explosives may be formed.

SECTION 7 · SPILL OR LEAK PROCEDURES

Steps to be Taken if Material is Spilled or Released: Immediately evacuate the area and provide maximum ventilation. Unprotected personnel should move upwind of spill. Only personnel equipped with proper respiratory and skin/eye protection should be permitted in area. Dike area to contain spill. Take precautions as necessary to prevent contamination of ground and surfac waters. Recover or absorb spilled material on sawdust or vermiculite and sweep into closed containers for disposal. After all visible traces have been removed, thoroughly wet vacuum the area. DO NOT flush to sewer. If area of spill is porous, remove as much contaminated earth and gravel, etc., as necessary and place in closed containers for disposal. (See Below)

Waste Disposal Method: Contaminated sawdust, vermiculite or porous surface must be disposed of in a permitted hazardous waste management facility. Recovered liquids may be reprocessed o incinerated or must be treated in a permitted hazardous waste management facility. Care must be taken when using or disposing of chemical materials and/or their containers to prevent environmental contamination. It is your duty to dispose of the chemical materials and their containers in accordance with the Clean Air Act, the Clean Water Act, the Resource Co servation and Recovery Act and all relevant state or local laws/regulations regarding dispo

SECTION 8 · SPECIAL PROTECTION INFORMATION

Respiratory Protection: For emergencies or working in confined areas, wear self-contained breathing apparatus or supplied air respiratory protection. In other circumstances involving potential overexposure, use NIOSH/MSHA-approved organic vapor respirator. (Obselimitations directed by manufacturer). Respiratory protection program must be in accordance with 29CFR 1910.134.

Ventilation (Type): Dilution (General) or Local Exhaust - Sufficient to maintain workplace concentration below permissible exposure limits.

Eye Protection: Splashproof goggles

Gloves:polyethylene, neoprene or polyvinyl alco

Other Protective Equipment: Safety shower and eye-wash fountain in immediate area. Personnel protective clothing and use of equipment must be in accordance with 29CFR 1910.133 and 29CFR 1910.132.

SECTION 9 · SPECIAL PRECAUTIONS

Precautions to be Taken During Handling and Storing:

- Do not use in poorly ventilated or confined areas.
- Tri-Ethane® vapors are heavier than air and will collect in low areas.
- Keep container closed when not in use.
- Do not store in open, unlabeled or mislabeled containers.
- Liquid oxygen or other strong oxidants may form explosive mixtures with Tri-Ethane®.
- This material or its vapors when in contact with flames, hot glowing surfaces or electr arcs can decompose to form hydrogen chloride gas and traces of phosgene.
- AVOID CONTAMINATION OF WATER SUPPLIES: Handling, storage and use procedures must be carefully monitored to avoid spills or leaks. Any spill or leak has the potential to c underground water contamination which may, if sufficiently severe, render a drinking water source unfit for human consumption. Contamination that does occur cannot be easily corrected.

Other Precautions:

- AVOID PROLONGED OR REPEATED BREATHING OF VAPORS. High vapor concentrations can cause dizziness, unconsciousness or death. Long term overexposure may cause liver/kidney in
- USE ONLY WITH ADEQUATE VENTILATION. Ventilation must be sufficient to limit employee exposure to Tri-Ethane® below OSHA permissible limits (8-hour TWA 350ppm). Observance of lower limits (outlined in Section 4) is advisable.
- AVOID CONTACT WITH EYES. Will cause irritation and pain.
- AVOID PROLONGED OR REPEATED CONTACT WITH SKIN. May cause irritation or dermatitis.
- DO NOT TAKE INTERNALLY. Swallowing may cause injury or death.
- DO NOT EAT, DRINK OR SMOKE IN WORK AREAS.

References:

- 1. NIOSH Registry of Toxic Effects of Chemical Substances, 1978
- 2. Industrial Hygiene and Toxicology, Volume II, Second Edition, F. A. Patty, 1963
- 3. Dangerous Properties of Industrial Materials, Fifth Edition, N. I. Sax, 1979
- 4. Industrial Toxicology, Hamilton and Hardy, 1974
- 5. Toxicity and Metabolisms of Industrial Solvents, Erowning, 1965
- 6. Toxicology, the Basic Science of Poisons, Casarett and Doull, 1980
- 7. Federal Register, 45FR Hazardous Waste Management Systems Part III, Identification and Listing of Hazardous Wastes, Page 33084, May 19, 1980
- 8. EPA Science Advisory Board, Subcommittee on Airborne Carcinogens, September, 1980

Comments:

The data in this Material Safety Data Sheet relates only to the specific material designated and does not relate to its use in combination with any other material or process. The data contained is believed to be correct. However, since conditions of use are outside our control it should not be taken as a warranty or representation for which Hydrite Chemical Co. assumes legal responsibility. This information is provided solely for your consideration, investigation, and vertication.

©1981 PPG Industries, Inc.

Mor. Product Salety

VUICUNCHEMICALS

Division of Vulcan Materials Company

MATERIAL SAFETY DATA SHEET

(ESSENTIALLY SIMILAR TO FORM OSHA-20)
SEE IMPORTANT NOTICE ON BOTTOM OF OTHER SIDE
24 Hour Emergency Phone (316) 524-5751

I - PRODU	CT IDENTIFICATION	
MANUFACTURER'S NAME AND ADDRESS Vulcan Materials Company, Chamicals Division,	2. 0. Box 7689, Birmingham, AL	35253-0689
CHEMICAL NAME 1,1,1-Trichloroethane, Methyl Chloroform	CHEMICAL FORMULA CH3CC13	מיש ט מישוני מישור מישובים
TRADE NAME AND SYNONYMS Solveri 1119	CHEMICAL FAMILY Chlorinated Hydrocarbon	2353 H. Moyizir B.
CAS REGISTRY NO. 71–55–6	DOT IDENTIFICATION NO. UN 2831	**************************************

	II - HAZARDOUS INGREDIENTS		
MATERIAL OR COMPONENT	%	(wt) F	PEL (Units)
l,l,l Trichloroethane (stabilized)	10	0 3	50ppa

		III - PHYSI	CAL DATA	
BOILING POINT ("F.)	1	62-190°F	SPECIFIC GRAVITY (H2O=1)	1.3
VAPOR PRESSURE (mm Hg.)	@20°C	100	PERCENT, VOLATILE BY VOLUME (%)	100
VAPOR DENSITY (AIR = 1)		4.6	EVAPORATION PATE (ether=1)	0.4
SOLUBILITY IN WATER	0.072/100	kg 3 25°C	APPEARANCE AND ODOR	Colorless clear liquid; mildly sweet coor.

IV - FIRE AND EXP	LOSION HAZARD DATA		
FLASH POINT (Method used)	FLAMMABLE LIMITS	Lower	Upper
None (TCC)	in air @ 25°C	7.5% (vol)	15.0% (vol)
EXTINGUISHING MEDIA			
Foam, Dry Chemical, Carbon dioxide			
SPECIAL FIRE FIGHTING PROCEDURES			
Self-contained breathing apparatus should be us	ed in areas where 1,1,1-t	richloroethane 1	s stored.
UNUSUAL FIRE AND EXPLOSION HAZARDS Concentrated vap			
Decomposition produces hydrogen chloride.		·	

			V - F	REACTI	VITY DATA			
STABILITY	UNSTA	BLE	COND	CONDITIONS TO AVOID				
	E X	Contact with open flame, hot surfaces or electric arcs						
INCOMPATABILIT	•	avoid) lizing materials						
HAZARDOUS DE			omte)					
Hydrogen chloride, phosgene (small amounts) MAY OCCUR		CONDITIONS TO AVOID						
POLYMERIZATIO	————	WILL NOT OCCUR		Х	.None			

VI - HEALTH HAZARD DATA

OSHA PERMISSIBLE EXPOSURE LIMIT

350 ppm 8 hour TWA. (29 CFR part 1910.1000)

ACGIH: 350 ppm 8 hour TLV; 450 ppm 15 min STEL.

EFFECTS OF OVEREXPOSURE

MAJOR route of exposure - low systemic toxicity; acute exposures in the 1000 ppm range cause narcosis. Overexposure can cause dizziness, drunkenness and drowsiness, unconsciousness and even death at extreme doses.

SKIN CONTACT/ABSORPTION:
Prolonged or repeated skin contact can cause dermatitis through defatting of skin.
Absorption through skin is not a significant route of exposure - mildly irritating on contact.

INGESTION:

Unlikely route of exposure, ingestion of small quantities is not likely to be toxic.

EYES:

Mild irritation, but no corneal injury likely. May cause conjunctivitis.

EMERGENCY AND FIRST AID PROCEDURES

EYES AND SKIN

Remove contaminated clothing and flush exposed areas with water for 5 to 15 minutes.

INHALATION

Remove to fresh air. If breathing has stopped, administer respiration or oxygen if available.

INGESTION

Do not induce vomiting. Call physician and obtain medical attention.

VII - SPILL OR LEAK PROCEDURES

STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED

Evacuate the area, ventilate, avoid breathing vapors, contain spill. Clean up area (wear protective clothing) by mopping or with absorbent material, transfer to closed container.

WASTE DISPOSAL METHOD Recovered liquids may be sent to a licensed reclaimer or incinerated. Contaminated absorbent material must be disposed of in a permitted waste management facility. Consult federal, state or local disposal authorities for approved procedures.

VIII - SPECIAL PROTECTION INFORMATION

SPECIFIC PERSONAL PROTECTIVE EQUIPMENT

RESPIRATORY None required when used with adequate ventilation.

EYE	Chemical safety goggles. Contact lenses should not be worn.
SKIN	Neoprene, viton, polyvinyl alcohol coated gloves or equivalent.
OTHER	Protective headgear & apron when splashing is a problem.

VENTILATION REQUIREMENTS

Sufficient to maintain below PEL.

IX - SPECIAL PRECAUTIONS

PRECAUTIONS TO BE TAKEN IN HANDLING AND STORING Avoid contact with skin & avoid breathing vapors. Pipe vents outdoors. Store in cool, dry, ventilated area. Vapors are heavier than air and will collect in low areas.

OTHER PRECAUTIONS

Prevent moist air from entering storage. No smoking in presence of vapors.

Contact with aluminum parts in a pressurizable fluid system may cause violent reactions.

Consult equipment supplier for further information.

DATE September 1982

.111. .23

NOTICE: Vulcan Chomicals believes that the information contained on this Material Safety Data Sheet is accurate. The suggested procedures are based on experience of the date of publication. They are not necessarily all-inclusive nor fully adequate in every circumstance. Also, the suggestions should not be confused with nor bloomer violation of applicable laws, regulations, rules or insurance requirements.

NO WARRANTY, EXPRESS OR IMPLIED. OR HERCHARITABILITY, FITNESS OR OTHERWISE IS MADE.

181NG CHEMICAL COMPANY
1827-18th Ave.
P.O. BOX 1595
ROCKFORD, IL 61110
(815) 397-0500

MATERIAL SAFETY DATA SHEET

June 13, 1986

RODUCT HAME SAFE-SOLV			
HEMICAL HAME	LATE WITH ADDITI	VES	
			1
water white lic	uid - sharp odor	-	-
EMERGENCY TELEPHONE RUMBER	CHEMTREC - 800-	424-9300	
VIKING CE	EMICAL CO 815-	397-0500	
B. COMPONENTS AND	HAZARD INFORMA	NOITA	
lazardous Components (Specific Chemical Identity; Com	non Hame(s)) OSHA PEL	ACGIII TLV	Other Units Recommended % (cyclor
METHYLENE CHLORIDE	500ppm		
PERCHLOROETHYLENE	'100ppm		100 ppm (TWA)
MINERAL SPIRITS	500ppm	100ppm	
			
			
HAZARDOUS MAIERIALS IDENTIFICATION SY Health Flammability Reactivity BA			
EXPOSURE LIMIT FOR TOTAL PRODUCT - E/	SIS commended by the Americ	an Conference	of Governmental
8-hour workday It	dustrial Hygienists (AC	:s(III)	
C. EMERGENCY AND I	IRST AID PROCEL	OURES	
EYE CONINCI If spleshed into the eyes, flush wishedea. If irritation persists,		inutes or unti	1 irritation
SKIN CONTACT		and made at ta	thoroughly with somp

INGESTION

If Ingosted, DO NOT induce vomiting; call a physician immediately.

D. FIRE AND EXPLOSION HAZARD INFORMATION

FLASH POINT (MINIMUM)

none

0

AUTOICHITION TEMPERATURE
ACCIONIMALETY 255°C (490°F)
ASIM D 2155

ASIM D 86, 18g Closed Cup

MATIONAL FIRE PROTECTION ASSOCIATION (NEPA) - HAZARO IDENTIFICATION

Health Flammability Reactivity BA

BASIS

Recommended by the National Fire Protection Association

HANDLING PRECAUTIONS

Keep product away from heat, sparks, pliot lights, static electricity, and open flame.

FLAMMABLE OR EXPLOSIVE LIMITS (APPROXIMATE PERCENT BY VOLUME IN AIR)
Estimated values: Lover Flammable Limit 0.9% Upper Flammable Limit 23.0%

EXTINGUISHING MEDIA AND FIRE FIGHTING PROCEDURES

Foam, Water spray (ing), dry chemical, combon diskler and vaporizing liquid type extinguishing agents may all be suitable for extinguishing fires involving this type of product, depending on size or potential size of fire and circumstances related to the situation. Plan fire protection and response strategy through consultation with iccal fire protection authorities or appropriate pecialists.

The following procedures for this type of product are based on the recommendations in the National Fire Protection Association's "Fire Protection Guide on Hazardous Materials", Eighth Edition (1884):

Use dry chemical, form or carbon dioxide. Water may be ineffective, but water should be used to keep fire-exposed containers cool. If a lesk or spill has ignited, use water spray to dispense the vapors and to protect nea attempting to step a leak. Water spray may be used to flush apills away from exposures. Minimize breathing gases, vapor, fumes or decomposition products. Use supplied-air breathing equipment for enclosed or confined spaces or as otherwise needed.

NOTE: The inclusion of the phrase "water may be ineffective" is to indicate that although water can be used to cool and protect exposed material, water may not extinguish the fire unless used under favorable conditions by experienced fire fighters trained in fighting all types of flammable liquid fires.

DECOMPOSITION PRODUCTS UNDER FIRE CONDITIONS

Fumes, amoke, carbon monoxide, aldehydes and other decomposition products, in the case of incomplete combination.

EMPTY" CONTAINER WARRING

Empty containers retain residue (liquid and/or vapor) and can be dangerous. DO NOT PRESSURIZE, CUT, WEID, BRAZE, SOLDER, DRILL, GRIED OR EXPOSE SUCH CONTAINERS TO HEAT, FLAME, SPARKS OR OTHER SOURCES OF IGNITION; THEY MAY EXPLODE AND CAUSE INJURY OR DEATH. Do not attempt to close since residue is difficult to remove. "Empty" drums should be completely dealerd, proportly bunged and promptly returned to a drum reconditioner. All other containers should be disposed of in an environmentally base manner and in accordance with povernmental regulations. For work on tanks refer to Occupational Safety and Health Administration regulations. ANSI 249.1, and other governmental and industrial references pertaining to cleaning, repairing, welding, or other contemplated operations.

E HEALTH AND HAZARD INFORMATION

VARIABILITY AMONG INDIVIDUALS

Health studies have them that many petroleum hydrocarbons and synthetic lubricants note potential human health risks which may vary from person, to person. As a precaution, exposure to liquids, vapors, mists or fumes should be alimitated.

| EFFECTS OF OVEREXPOSURE (Signs and symptoms of exposure)

High vapor concentrations (greater than approximately 1900 ppm) are irritating to the eyes and the respiratory tract, may cause headaches and dizziness, are anesthetic, and may have other central nervous system effects.

NATURE OF MAZARO AND TOXICITY INCORMATION

Prolonged or recented skin contact with this product tends to remove skin alls possibly leading to irritation and demantitie; however, based on human experience and available toxicological data, this product is judged to be neither a "corrosive" nor an "irritant" by OSHA criteria.

Product contacting the eyes may cause eye irritation.

Reports of animal studies using both sexes of several species have shown that kidney damage can occur in male rats after prolonged and regarded inhalation exposures to light hydrocarbon vapors of the general type present in this product. While the damage is of a low order of severity in animals, the implications of these results for humans have not yet been determined.

Product has a low order of acute oral and dermal toxicity, but minute amounts applied into the lungs during indestion may cause mild to severe pulmonary injury and possibly death.

This product is judand to have an acute oral LDSO (rat) preater than 5 g/kg of body waight, and an acute dermal LDSO (rabbit) greater than 3.16 g/kg of body weight.

F. PHYSICAL DATA

The following data are approximate or typical values and should not be used for precise design purposes.

Approximately >104°

1,

> 12 mm lig P 25°C

VAFOR DEHISTTY (AIR = 1)

SPECIFIC GRAVITY (15.8 C/15.8 C)

>3.0

1.0389

PERCENT VOLATILE BY VOLUME

pli Essentially hnutral EVAFORATION RAIE + 1 AIM. AND 25 C (77 F) . (n-BUIYL ACETATE = 1)

process and the second

0.6 SOLUBILITY IN WATER # 1 ATM. AND 25 C (77 f) Highlighter less than 0.1%

G. REACTIVITY

This product is sinhle and will not react violently with water. Inzardous polymerization will not occur. Avoid contact with alread exidents such as liquid chlorine, concentrated exygen, Bodium hypochlorite or calcium hypochlorite.

Metallic aluminum and zinc powders should be avoided.

H SPILL OR LEAK PROCEDURES

STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED

Shut off and eliminate all ignition sources. Keep people away. Recover free product. Add sand, each or other suitable absorbent to apill area. Hindules breathing vapors. Minimize akin contact. Vantilate confined spaces. Occur ell windows and doors. Keep product out of nevers and watercourses by diking or impounding. Advise authorities if product has entered or may enter.

VCS-02CS

sewers, watercourses, or extensive land areas.
Assure conformity with applicable governmental regulations. Continue to observe precautions for volatile, combustible vapors from absorbed material.

I. PROTECTION AND PRECAUTIONS

VENTILATION

Use only with ventilation sufficient to prevent exceeding recommended exposure limit or buildup of explosive concentrations of vapor in air. Use explosion-proof equipment. No smoking or open lights.

RESPIRATORY PROTECTION

Use supplied-air respiratory protection in confined or enclosed spaces, if needed.

PROTECTIVE GLOVES

Use chemical-resistant gloves, if needed, to avoid prolonged or repeated skin contact.

EYE PROTECTION

Use aplash penging or face shield when eye contact may occur.

DIHER PROTECTIVE EQUIPMENT

Use chemical-resistant apron or other impervious clathing, if needed, to avoid contaminating regular clothing which could result in prolonged or repeated akin contact.

WORK PRACTICES / ENGINEERING CONTROLS

Keep containers and storage containers closed when not in use. Do not store mean heat, sparks, flame or strong exidents. To prevent fire or explosion risk from static occumulation and discharge, effectively ground product transfer system in accordance with the National Fire Protection Association standard for petroleum products.

PERSONAL HYGIENE

Minimize breathing vanor or mist. Avoid prolonged or repeated contact with skin. Remove contaminated clothing: launder or dry-clean before reuse. Remove contaminated shoes and thoroughly clean and dry before reuse. Cleanse skin thoroughly after contact, before breaks and meets, and at end of work period. Product is readily removed from skin by waterless hand cleaners followed by washing thoroughly with soap and water.

J. TRANSPORTATION INFORMATION

TRANSPORTATION INCIDENT INFORMATION

For further information relative to splits resulting from transportation incidents, refer to latest Department of Transportation Emergency Response Guidebook for Hazandous Materials incidents, DOT P 5000.3.

K. ADDITIONAL INFORMATION

MOTE TO PRYSICIAN: Because rapid absorption may occur through lungs if aspirated and cause systemic effects, the decision of whether to induce vomiting or not should be made by an attending physician. If lawage is perfected, suggest endotrophysic and/or escapages, control. Canges from lung segistion must be weithed spained toxicity when considering emptying the attention. Exposure may increase invocational intitability. To not administrate sympathomimetic drugs unless absolutely necessary. No specific antidote. Supportive care. Treatment based on judgment of the physician in response to reactions of the patient.

VIKING CHEMICAL COMPANY 1827 Eighteenth Avenue Post Office Box 1595 Rockford, Illinois 61110 815-397-0500 March 18, 1988

ECOLAB INC. ATTN: NAMEY VANCE WTS P.O. BOX 1018 BELOIT, WI 53511

Dear Viking Customer,

Enclosed are the Material Safety Data Sheet(s) (MSDS) which provide information on products which you have previously purchased from Viking. These MSDS have either been revised since you last received them, or are for products which you have purchased from us in the recent past. Please consider them as the current copy to replace any previous version you may have received.

The distribution of these sheets is part of a continuing program at Viking of providing information and updating our valued customers. This information should be made available to any health and safety personnel in your firm as well as all employees handling these products. Any significant changes in health, safety, or environmental protection information will be promptly forwarded to you. For this reason, you may wish to maintain records of any internal distribution so that updated sheets may be forwarded to the appropriate personnel.

When a Viking Chemical product is resold in the original package with a Viking label, the reseller has the responsibility for ensuring that the Viking MSDS is provided to its purchaser, but we will gladly handle requests for MSDS's directly with them.

 We appreciate your patronage and will continue to provide the quality products and service you have come to expect.

Sincerely,

VIKING CHEMICAL COMPANY
Quality Assurance Department

Enclosure(s)

UNUSUAL FIRE AND EXPLOSION HAZAROS

none

3173/0493/3472

form No. USD-0054 May 1959

Form Approved
Budget Bureau No. 44-Rt 387

U.S. DEPARTMENT OF LABOR

Bureau of Labor Standards WAGE AND LABOR STANDARDS ADMINISTRATION

	MATERIAL	- t	SAFET	IY DATA SHEET	B	·
		•	SECTI	ON I		
	MAGNUS DIVISION, ECONOMICS LABO ADDRESS (Number, Street, City, State, and ZIP Code	RAT	ORY, IN	C: EMERGENCY TELEPHONE NO. 612-224-4678		·
	Osborn Building, St. Paul, Minn	eso	ta 551			·
	CHEMICAL NAME AND SYNONYMS N.A.			MAGNUS SOLVENT		
Γ	CHEMICAL FAMILY Solvent			FORMULA N.A.		
٠ <u>٠</u>						
	SECTION	Ĩ II	HAZAR	DOUS INGREDIENTS	ز::: <u></u>	
	PAINTS, PRESERVATIVES, & SOLVENTS	5	TLV (Units)	ALLOYS AND METALLIC COATINGS	5.	TLV (Units)
1	PIGHENTS		-	BASE METAL	1	. [3
THE STATE OF	CATALYST			ALLOYS		
E	VEHICLE			METALLIC COATINGS	.	į (<u>†</u>
H	SOLVENTS			FILLER METAL PLUS COATING OR CORE FLUX		
į	ADDITIVES			OTHERS		·
£	OTHERS	-				
	HAZARDOUS HIXTURES	OF	OTHER LIQ	UIDS, SOLIDS, CR GASES	5.	TLV (Units)
	Methylene Chloride				30	200 ppm
	Aromatic Hydrocarbon				30	200ppm
され	1,1,1 Trichloroethane				30	350ppm
Ş						
1				والمعاود المستنسخ المساورة والمراجع والمستحدد والمراجع والمستند والمراجع والمستحد والمراجع والمستحد والمستحدد		
.	SE	CTI	ON III	PHYSICAL DATA	<i>e</i> [33]	2:5
•	BOILING POINT (F.)		103°F	SPECIFIC GRAVITY (H20=1)	1	.141
	VAPOR PRESSURE (mm Ha.)		113	PERCENT VOLATILE BY VOLUME (%)		100
	VAPOR DENSITY (AIR=1)	uı	nknown	EVAPORATION RATE (\(\pi - \text{BUCY} \) = 1)	>	> 1
:	SOLUBILITY IN WATER	n	egligib	Acetate le		
:	APPEARANCE AND ODOR Clear, Colorle	255		- Solvent Odor		. <u> </u>
	ب دار در دردن ساده میداند. با در درو در دو به مرومیسید و در سید هما میزارسید			and the second of the second o	<u>~~</u> .	· · · · · · · · · · · · · · · · · · ·
	SECTION IV	F	IRE AND	EXPLOSION HAZARD DATA		
•	FLASH POINT (Meihid used) None to boil	ing		FLAMMABLE LIMITS N.A.	\perp	Ual
	EXTINGUISHING MEDIA N.A.			-		
	SPECIAL FIRE FIGHTING PROCEDURES . N.A.					
						

									FRIOMOS SOLVENT 172
			s	ECTION	١,٧.	HEALT	Н НАХАР	D DAT	A
	THRESHOLD LIMIT VA	LUE	N.A.						};
-	Effects of Overexed Inhalation: S	evere	cases-li	arcosi	s, r	nay res	semble a	lcohol	lic intoxication, rapid pulse
	mental confus	ion. Dem	Mild cas	se-Nau	sea	, vomit	ing, he	adache	e. Eyes: Burning, tearing.
	EMERGENCY AND FIRE	h sk	ROCEDURES	ehlv w	ith	soap a	and clea	n wate	er. Remove contaminated clothing
	and wash before	re re	use. EY	eS: In.	med ned	iately lowed,	tlush w TON GD	ith pl	lenty of running water for at e vomiting. Call a physician ir. GET MEDICAL ATTENTION
•	INCEDIATELY.	TNHY	ALATION:	lamed	iato	cly mo	ve to fr	esh ai	17. GET MEDICAL ATTENTION
	43551-14-486 0000F		ekiniken in						est especialistical residence at the 11
	Service and			SECT	ION.	VI FE	ACTIVITY	DATA	
	STABILITY	UNST	ABLE		CO	PHOITIONS	TO AVOID		
47.4	INCOMPATABILITY ()	STAB		l x	<u> </u>		-		: c++ K
•			S	trong	Oxi	dizers	·		
į,	HAZARDOUS DECOM	POSITIO		Oxides	s of	Carbo	n and Ci	lorin	ne
	HAZARDOUS		MAY OCCUR				CONDITIO		
7	OLYMERIZATION		WILL NOT OC			X			
							<u> </u>		
1			ت تعدید در می	ومنسندسد		المنابعة المنابعة		المستنجد المرا	
			SF SF	CTION	VII	SPILI	ORIFAX	PROCE	DURES
	STEPS TO BE TAKEN	IN CASE	MATERIAL IS	RELEASED	ORS	PILLED			absorbent in accordance with
	local regula								
	i local regula						- I KGI IIIC		·
	WASTE DISPOSAL M		acal ordi	nances			a dispos	a1 of	chlorinated solvents.
	F DISPOSE OL 1		JCAL OLUL	Hances	16	Retem	g CISOUS	ar or	Cartor maced solvenes.
									The state of the s
	ş: [حشندك ده	<u> </u>		ت نــه.		ورث کنیا	سندين	The second secon
	en di Shikatora	et:						• • • • •	
	RESPIRATORY PROT	ECTION	(Specify type)	וווע, מכ	. SF	PECIAL	PROTECTI	ON INF	FORMATION
			CAL EXHAUST	Air re	espi	rator			SPECIAL
	VENTILATION	Ca	pture Vel		50-	100 FF	?\ <u></u>		37 COAC
			CHANICAL (Ge	·			· 		OTHER
	Gauntlet ty			loves		<u> </u>	EYE PROT	ection	s - Face Shield
	Neoprene A	ron &	Boots						
	PRECAUTIONS TO	AF TAKE	IN IN HANDLE	S SECT	ION	IX. SP	ECIAL PRI	CAUT	10NS AND ADDRESS OF THE PROPERTY OF
	Use only wi	ich ac	dequate v	entila	tion	n. St			place in original container internal pressure by
	and protect	1005	ening bun	Z		venc	orr bos	21016	: Internal pressure of
	- CAUTION:	Conta	ins chlor	inated	50	lvent.	Harmfu	lit	swallowed. Avoid prolonged bre
	irritation	rrot.	EP OIT OF	REACT	l OF	CHILD	REN.	ich t	his product-causes
	سدمتا مسلمتك سيمر المنس			·- · · · · · · · · · · · · · · · ·		~~~~	. د د د است همد د سبت	به کندسیدیدو د ه	فللمصيحة والتواكينية كالرمطاء والمسترق والمار فيعراج فللملا بمستشيدة وازب بيهما فارتبه ويتبرط بالمسترشان ليمك



A Liquid Product

Degreasing of Metal Surfaces

ADVANTAGES

- FAST DISSOLVING ACTION ON GREASES AND OILS
- DRIES QUICKLY AND LEAVES NO RESIDUE
- NON-CORROSIVE TO METALS
- NON-FLAMMABLE AND NON-EXPLOSIVE
- CONTAINS NO CARBON TETRACHLORIDE

Product Use

MAGNUS SOLVENT NO. 2 is used for a wide variety of cleanin jobs where greases and oils, such as cutting and stamping oil are to be removed from metal surfaces. It is particularly suited for ar metal cleaning operation where a non-flammable solvent is require-

A Liquid Product

PRODUCT DESCRIPTION

MAGNUS SOLVENT NO. 2 is a clear, colorless liquid blend of selected solvents of the chlorinated and petroleum hydrocarbon types.

TECHNICAL DATA

Form: Thin clear liquid Flash Point: None Specific Gravity: 1.23 Stability: Very stable Freeze Point: None

DIRECTIONS FOR USE

MAGNUS SOLVENT NO. 2 can be brushed or wiped over the parts to be cleaned. It can also be used in a tank, wherein the parts to be cleaned are immersed in SOLVENT NO. 2 until clean. A second tank containing SOLVENT NO. 2 is often used for rinsing parts, particularly when very clean work is desired.

In some cases, the use of a coarse spray method at close range is applicable.

To hasten the drying of the parts, an air blow-off may be used.

Keep tanks covered when not in use in order to minimize loss by evaporation.

PRECAUTIONS

Contains chlorinated solvents.

Use only with adequate ventilation.

Avoid prolonged or repeated contact with skin.

Avoid breathing vapor.

Vent off possible internal pressure by cautiously loosening drum bung.

Do not use or store contents near heat or fire.

CONTAINERS

MAGNUS SOLVENT NO. 2 is available in 55 and 15 gallon drums and 5 gallon cans.

MAGNUS DIVISION NE

erelas sols antenna luccus en enclus unice

U.S. DEPARTMENT OF LABOR

Thomas Mounte, Way Vo

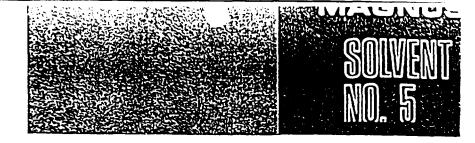
WAGE AND LABOR STANDARDS ADMINISTRATION Bureau of Labor Standards

MAYERIAL SAFETY BATA CHEET

Ľ

SECTION I	
MACHUS ACTUMER'S NAME MAGNUS DIVISION, ECONOMICS LABORATORY, INC.	EMERGENCY TELEPHONE NO. 612-224-4678
ADDRESS (Number, Street, City, State, and ZIP Code) Osborn Building, St. Paul, Minnesota 55102	
CHEMICAL NAME AND SYNONYMS N.A.	The state of the s
CHEMICAL FAMILY Solvent FORMULA	

SECTIO)N; ;;	MAKAI	DOUS INCREDIENTS		,
PAINTS, PRESERVATIVES, & SOLVENTS	5	TLV (Units)	7.	TLV (Units)	
PIGMENTS			BASE METAL		
CATALYST			ALLOYS		
VEHICLE	1		METALLIC COATINGS		
SOLVENTS			FILLER METAL PLUS COATING OR CORE FLUX		
ADDITIVES			OTHERS		; -,
OTHERS					5°. 12±
HAZARDOUS MIXTUR	ES OF	OTHER LIC	QUIDS, SOLIDS, OR GASES	::	TĽÝ • -(Units)
Orthodichlorobenzene				5	t .
Methylene Chloride				10	200000
Aliphatic Hydrocarbon				20	500pp:
Perchlorethylene				55	100ppm

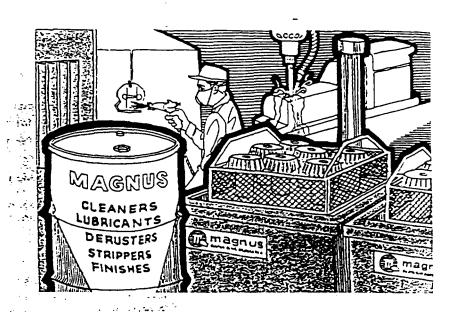

		PHYSICAL DATA	
BOILING POINT (F.)	> 10307	SPECIFIC GREVITY (M20=1)	1.240
VAPOR PRESSURE (~~ H2.1	58	PERCENT VOLATILE BY VOLUME 11	100
VAPOR DENSITY (AIRE)	unknown	EVAPORATION RATE (n-Butyl 5)	<u> </u>
SOLUBILITY IN WATER	negligib	Acetate	

FLASH POINT (Method used)	FLAMMAR, ELIMITS	Lel	Çivi
lione	Non+		
EXPLANATION ASPIA			
None			
SHE LET FREE FROM TONGE IN MERCURES			
Rone		-	
City of the contract of the contract of			
None			

			ACCORS GOLVERS 15
	SECTION	V 1670.	ATAG CANANI BE
Francisco Contraction	N.A.		
rental contraic Shin contact: Price of the Park EXTERVAL: Wash and wash before least 15 minute	ere cases-Narcosis, on. Hild case-Nause Nause Na	a, vosí distely distely allowed	sample alcoholic intexication, maple palmeting, headache. Eyes: Surning, tearing. and clean vater. Remove contaminated clock flush with plenty of running water for acide to NOT induce vomiting. Call a physiciative to fresh air. GET MEDICAL ATTENTION
			2 10 AVOID
INCOMPATABILITY (Mate	Strong ox	idizing	agents
		of Cale	orine & Carbon
HAZARDOUS	MAY OCCUR		CONDITIONS TO AVOID
POLYMERIZATION	WILL NOT OCCUR	х	
			OR LEAK PROCEDURES
	case Material is released of immercially available		bent. Wash remaining area with mild alkali:
detergent.			
WASTE DISPOSAL METH		ng the	disposal of chlorinated solvents.

		L PROTECTION INFORMATION
5- 25/HV1U54 6501	ECTION (Specify type) Air respirator	-
VENTILATION	LOCAL EXHAUST 50-100 FPM Capture Veloc	SPECIAL
	MECHANICAL (General)	GTHER
Frontective our	nu auntiet	Evernovection Gozgles - Face Shield

SECTION IX SPECIAL PRECAUTIONS	
PRELAUTORS TO SET VER TO RESOLD A PROSTORNO STORNO USE Only with Alegate ventilation. Store in a cool place in original contact and protect from direct conlight. Vent off possible internal pressure by clustously loosening bund	distri
Contains of apparation of protect of the and even from a content this product of the content of	



A Liquid Solvent

Cleaning Of Electric Motors

ADVANTAGES

- CONTAINS NO CARBON TETRACHLORIDE.
- NO FLASH POINT AS RECEIVED.
- EVAPORATES COMPLETELY, BUT NOT TOO RAPIDLY.
- LEAVES SURFACES DRY AND CLEAN.
- NO DISAGREEABLE ODOR.
- FAST DISSOLVING ACTION ON OILS AND GREASES.

Product Use

MAGNUS SOLVENT NO. 5 is used for cleaning electric motors, generators, alternators, and similar electrical components. Because of its superior solvency, MAGNUS SOLVENT NO. 5 is also useful for a variety of cleaning and degreasing functions.

MAGNUS DIVISION (E) ECONOMICS LABORATORY, INC.

DEBURN FULL DING . ST DALL MINNESOTA 55100

Description

Magnus SOLVENT NO. 5 is a chlorinated solvent degreaser used for cleaning electric motors, generators, alternators, and similar electrical components. Because of its excellent solvency, Magnus SOLVENT NO. 5 is also useful for a variety of cleaning and degreasing functions.

Benefits

- Contains no carbon tetrachloride
- No flash point as received
- Evaporates completely, but not too rapidly
- Leaves surfaces dry and clean
- No disagreeable odor
- Fast dissolving action on oils and greases

ATTACHMENT 6

: 1,1	,1 Trichlore		00 drum	ACC	<u> </u>	1240/9022 reaser	#1		lydrite (Chemical Grove Wi	Co., Box	x 153 _ 6 27	5.P. N10	•
			CF ODLY	,			# 2	_T					•	 -
	+ xecifcled product usually available)													_
_		7			0		# 4							_
			_				# 5						•	_
	REQUIS	SITION					URCHA	SE				APPROVED BY	DATE	70
DATE	INITIATED BY	QTY.	DATE NEEDED	DATE	BUYER	QTY. ORD'	o. PR	ICE	RPO #	VENDOR	SHIP DATE	DEPT. HEAD	REC'D.	fe
L0-17-8	WTS	1	10-31-84	10-22-84	JGN	1	26	7 00	220974		10-24-8	Mail	,	1

APPROVED B IP DEPT. HEAD TE 0-24-81	REC'D.
9-85	in the
122	
13.83 meser x =>	Z
	2
	Ci.
	. Ne
	nid
	THE
	La
del.	Zo
1 del . - 2029/	Zo.
7 11 11 11 11 11 11	1-15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

		D E	SCRIPTIO		#163240/		<u> </u>				DOR NAM			_
55	gal. drum Safe	-Solv		Re	qd. for R	epair/Salvage	#1	Viki Rkfd	ng Ch L <u>. 11</u>	emical, - 61100	1827 186	h Ave.		_
					eaning ar		# 2							_
							# 3							_
							# 4							
•			-				15							_
	, REOUI:	SITION		Ţ		PUR	CHAS	F				APPROVED BY	DATE]
DATE	INITIATED BY	QTY.	DATE NEEDED	DATE	BUYER	QTY. ORD'D.		CE RP	0 #	VENDOR #	SHIP DATE	DEPT. HEAD	REC'D.	
4-5-88	NMV	1 drum	ASAP	4-6-88	JON MM	1 (55 gal.)	1	gal 299		1	4-8-88		В] Inni
6-2-88	ħΝΛ	3 drums	ASAP	6-2-88	JOIDIAM	3 11 11	4.47			/	Nacl 6-6			ره/
							/,	9						
				<u> </u>										
			<u>.</u>											
						·					ļ			
										!			"	
											ļ			
													 -	
								_						
ļ														
				<u></u>										
											ļ		· · · · · ·	
										· · · · · · · · · · · · · · · · · · ·				
											ļ			
				<u> </u>					7					

ATTACHMENT 7

Viking Chemical Company

INVOICE UNTE

INVOICE MUXIEER

3/10/00

77168

DIAL (815) 197-0500

DIAL (815) 197-0500

ROCKFORD, ILLINOIS 61110

MAIL REMITTANCES TO: VIKING CHEMICAL COMPANY P.O. BOX 1595 ROCKFORD, ILLINOIS 611 10

SOLD

ECOLAR ING.

SARAYAR ETHUDOOA : INTTA

ECOLAR CENTER

8T. FAUL, MN 55102

SHIPPED ECONOMICS LABORATORY
HWY. 51 & ROCKTON ROAD
00. RELOIT, IL 61080

CUST. NO. 10006093000		CUSTOMER P.O. NO. 298938	OHOER DATE	SALESMAN B 06		THIRTY	DAYE.		
SHIPPEO VIA : OUR TRUC		FORDESTINATION	,	PICK	ΝÞ	нтв			
NUMBER CONTACTOR	i di interna		DESCRIP	TION ()		AUNHILLA.	UNIT PRICE	UNIT	AMOUNT
OOD2 BBL Or	5 4409-B	55-20 BAFE-80	LV			110	1.470	GAL	491.70
			<u>.</u>	CONTAINER	CHAR	GE AT			40.00
0002 BBL 12	5 3132-B	19-20 BUT 700	4-BUILER W	TER TREATM	ENT	220	1,410	LBB	352.50
				CUNTAINER	CHAR	GE AT			40.00
					•				
CONTAINER TYPE DRAI = DRUM BGS = BAGS DOWN	DOTTLES C	CTN = CARTON3 SMP	= SAMPLES	FEOÈRAL ÉXCISE	TAX	SALE	S TAX	PLEAS	E PAY THIS AMOUN
CBY = CARBOYS CAS	* CANES * *	CYL + CYLINDERS T/C MIS = MISC (BULK) T/T PLS = PAILS T/W	= TANK TRUCK = TANK WAGON		00	· ·	52.76	• .	976.96

RETURNABLE CONTAINERS ARE THE PROPERTY OF THE SECLER AND ARE COAFED TO THE FLYRER PAYMENT OF DEPOSIT LOCAL CONTAINERS CONTAINERS CONTAINERS ARE THE PROPERTY OF THE SECLER AND ARE COAFED TO THE FLYRER PAYMENT OF DEPOSIT LOCAL CONTAINERS ARE ACTURATED IN GOOD CONTAINERS ARE THE SAME AS ORIGINALLY FURNISHED, AND SHOW AND EVIDENCE OF ARIGING ON USE FOR PURPOSES OTHER THAN THE STRIAGE OF ORIGINAL CONTAINERS ALL PRODUCTS ARE BOLD WITHOUT WARRANTLY OF MY KIND AND PURPOSED VILL BY THEIR OWN TESTS DETERMINE SUITABILITY OF SUCLI PRODUCTS ARE BOLD WITHOUT WARRANTLY OF MY KIND AND PURPOSED VILL BY THEIR OWN TESTS DETERMINES AND SHOULD BUT TO SUCLI PRODUCTS ARE ALL PRODUCTS ARE BOLD WITHOUT WARRANTLY OF MY KIND AND PURPOSED VILL BY THEIR OWN TESTS DETERMINES AND SHOULD BUT TO SUCLI PRODUCTS ARE SHOULD BE AND A SOUTH TO SUCLI PRODUCTS AND A SOUTH TO SUCLIAR AND A SOUTH TO SUCLI PRODUCTS AND A SOUTH TO SUCLIAR AND A SOUTH TO SUC

Viking Chemical Company

1827 1827 18711, AVE. P.O. BOX 1595 ROCKFORD, ILLINOIS 61110

INVOICE DATE

INVOICE NUMBER

68/80/9

80468

MAIL REMITTANCES TO: VIKING CHEMICAL COMPANY P.O. BOX 1595 ROCKFORD, ILLINOIS 61110

COLD

ECULAB INC.

ATTN1 ACCOUNTS PAYABLE

DIAL (815) 197-0500

ECOLAB CENTER

9T. PAUL, MN 55102

SHIPPED

ECONOMICS LABORATORY
HWY, 51 & ROCKTON ROAD
BO, DELUIT, IL 61080
- DELIVER BY MONDAY 6/6

UST. NOI	DEL, NEC. NO.	CUSTOMER P.O. NO.	ORDER DATE	SALESMAN	TENM	s	·		•
0002003000	E9E04	있99315	6/03/88	06	NET	THIRTY	DAY8.		
HIPPED VIA - OUR TRUCK		FOE DESTINATION		CHEC	K FO	פידא אכ		,	
IUMBER CONTINEACH	(12) (3) (6) (b)	ESSAINS INVESTIGATION	DESORIPTI			OUANTITY	UNIT PHICE	UNIT,	AMOUNT
0003 BBA 1055	6409-1	35+20 BAPE-801	_v	•		1.65	4,490	GAL.	740.05
			CC	INTALNER	CHAF	GE AT,			40,00
					•				
					:				•
				·					•
CONTAINER TYPE () () () DRIA - DRUM () () BTL	BOTILES	TH - CARTONS SMP	SAMPLES	DENAL EXCISE	XAT.	SALE	S,TAX	PLEASE	PAY THIS AMOUN
BGS = BAGS DDM & CB7 = CARBOYS CAS =	DEL DRUM	CYL = CYLINDERS T/C =	TANK CAR TANK TRUCK TANK WAGON	and the second seco	OO		46.30	المناكدة ا	847,15

RETURNABLE CONTAINERS ARE THE PROTERTY OF THE SELLER AND ARE COARED TO THE BURER. PAYMENT OF BETOSIT DUCK NOT CORVEY TILLE TO SUCH CONTAINERS DEPOSITS ARE TO BE PAID FOR IN FULL AS INVOICIO. FIRE, TEFUND OF DEPOSIT WILL BE MADE PROUPTLY, PROVIDED CONTAINERS ARE RETURNED IN GOOD CONDITION WITHIN SO CAYS
FROM DATE OF DIVIDICE CONTAINERS ARE THE SAME AS ORIGINALLY FURNISHED, AND SHOW NO EVIDENCE OF ABUSE OR USE FOR FUR OSE, OTHER THAN THE STORAGE ON OFFICIAL OWN TESTS OF TERRITIS SULF PRODUCTS ARE SOLD WITHOUT YARRANTY OF ATT WHO AND PURCHASERS WILL BY THEIR OWN TESTS OF TERRITIS SULF PRODUCTS ARE SULF PROPORTION OF THE PROPORTION OF THE

ATTACHMENT 8

 $N_{\bar{\textbf{0}}}$ 2319

P.O. Box 407 • West Dundee, IL 60118 Phone (312) 931-5315

CUSTOMER		-	ACCO	OUNT NO.			ATE		
	8	479					<u> 11-0</u>	9.87	
NAME EC	0	NOMICS C	DBO	DRAT	TORY	ت	W.C.		
ADDRESS		11 1015# 2515		· 10Ts.	100	· <	R5/		#
MIC	14	WAY 217 9 K	200	K/0/	100	10	, ba	.011 , 4	-6100
BU	OPI	ERATOR(S)	672	Zone	C.O.D.	07	cct. Mdse	Reid. P	aid Out
QUAN.	ď	DES	CRIP	TION			PRICE	AMC	UNT
105	7	Solvent Recovery		21)			5.75	603	7.5
_,	2	Solvant Recovery							
	3	Solvent Recovery							
	4			•					
	5	Drum Deposit		;					
	G	Drum Llds							
	7	Drum Wrenches							
	8								
	9		-						<u> </u>
1	0				TOTAL	DUE		603	75
					127				
A) Sol	ve	nt Received		GAI	100				
B) Sol	vei	nt Recovered		GAI	102				
C) Still	18	Bottom		GAI	16	<u></u>			
Yiel	ld	%		%	88				
				/	1				·
Yield % =	= D	ı ÷ Λ × 100 = %	1		<u> </u>				
REC'D BY		Much W	.1	///	-/				

SOLVENT SYSTEMS INTERNATIONAL INC. P.O. BOX 407 WEST DUNDEE, ILLINOIS 60118 (312) 931-0100 INVOICE

SCLD TO:E114
ECONOMICS LABORATORY, INC
GERRY HALL
HWY 251 & ROCKTON RD.
SOUTH BELOIT IL 61080

SHIP TO

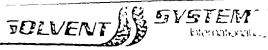
DATE : 07/20/88 No. 01944 PAGE : 1 DUE DATE: 08/04/88

SHIP VIA	F.O.B.		 	 YOUR #	299397 OUR # 2918
INVENTORY / D E			 	 DISC. \$	EXTENDED PRICE
		85 GAL 7/15/83 110 GAL 7/15/83			276.25 632.50

Nº

3160

からかんとうなる ないとうないのであれているとうとうとうないないとう


P.O. Box 407 • West Dundee, IL 60118 Phone (312) 931-5315

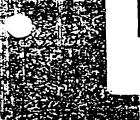
CUSTOMER'S ORDER NO.	ACCOUNT NO.	03-07-89
NAME ECOLAB		
ADDRESS HEY #251 & ROC	KTON RO SO	3ELOTT, ILL. 6/680

	BÜ	OP	ERATOR(S)	Unil No.	Zone	C.O.D.	OTAC	Cl. Mase	. Reid.	Paid Ou	ıt
	QUAN.			DESCRIP	MOIT	• •	. 1	PRICE	AN	TOUNT	
	167	1	Solvent Recovery	/	[21])		5-75	260	0/25	
	·	2	Solvent Recovery	/							
		3	Solvent Recovery	1						1	
		4									
		5	Drum Deposit								
i		6	Drum Lids								
		7	Drum Wrenches								
		8									
		9							1		
		10				TOTA	L DUE	1	1980	2 25	
	A) S	olve	ent Received		G.A	1/8	2				
	B) S	olve	ent Recovered		GA	LYD	/}	 	 		_
	C) S	till	Bottom		G#	NLLYS	1	_			
	Y	ielo	1 %		%	133	<u> </u>				
	Yield %	, =	8 ÷ A × 100 = %	, .							
	REC'D B	Y	Many	MI) on	ب					

KEEP THIS SLIP FOR REFERENCE

THE RESERVE OF THE PROPERTY OF

Νō


3225

THE STREET STREET

P.C. Box 407 · West Dundee, IL 60118 Phone (312) 931-5315

CUSTOMER'S C	ROER NO	ACCOUNT NO		A T E					
		1-114		<i>0</i> 7·/	Ý-89) 	EN PROPERTY.		
	COLAC							i i mar	•••
ADDRESS	25, 2 6	> 1 00	^ ^						
HWY	251 & FOCK	ION RD S	u BELOT	TIL	6/	080			
BU B	RATOR(S)	ni No. Zone	C O.D. On Ac	CI. Mose	Reid Pa	id Out			
QUAN:	O. Carrier Di	ESCRIPTION		PRICE	AMO	UNT			
123 1	Solvent Resovery	(21)		5.75	707	25	_	,	
2	Solvent Recovery								
3	Solvent Recovery								. :
4			·		-				
5	Drum Deposit			 	<u> </u>				
6	Drum Lids								
7	Drum Wrenches			Ì			1		
8				Ì	 				
9				 -	 				
10			TOTAL DUE		707	25	i distributi Injeritori	a de la composition de la composition La composition de la	و- (- ا أربط (
A) Colu	Baraina		130						
	ent Received	GAL	/ <u>/</u> /20	╁	 	1	1		•
B) Solve	ent Recovered	GAL	1015		 				
C) Still	Bottom	. GA	125	-	ļ	1	ी		• •.
Yield	1 %	%	1891	<u> </u>		<u></u>			
			,						
Yield % =	B ÷ A × 100 = %							2000 C	
REC'D BY	<i>"</i> .	`							
5	Namy M.	James		عاد الماد					
									

KEEP THIS SLIP FOR REFERENCE

P.O. Box 407 • West Dundee, IL 60118 Phone (312) 931-5315

						~					
Pal	_	RDER NO.	3	UNT NO.		1	01-19-90				
I a I	1	20	1 4	-114		1_	0/41.	7.770	<u>'</u>		
_	(OLAB					•				
HWY 251 & RCCKTON RD & BZGTT, ILL 61080											
HWY	_&	121 & KCCKI	80	KN 7	BEC	7/14	<u>-11(</u>	6/5	180		
RII	OPI	PATOR(S) Un	it No.	Zone (C.O.D. C	n Ac	ct. Masa.	Reid. Pal	d Out		
DAV QUAN.	¥	DE	SCRIP	TION:	-	4	PHICE	ัลก ^า ยเ	าเล้า :		
110	,	Solvent Recovery	(.21)			7.75	627	77		
	2	Solvent Recovery					45		*		
	3	Solvent Recovery									
	4					~					
	5	Drum Deposit									
	6	Drum Lids									
	7	Drum Wrenches									
	8										
	8										
	10				TOTAL (UE		632	B		
	_					. :					
A) S	olv	ent Received		GAL	115	, i.	 	ļ			
B) S	olv	ent Recovered		GAL	10		<u> </u>				
C) Still Bottom					05			}:			
> Yield %				%	96						
``.'	.010	. ,,		70	uperd						
Yield %	. =	B + A × 100 = %			1						
REC'D B								:			
_		()									

KEEP THIS SLIP FOR REFERENCE

140

4297

P.O. Box 407 • West Dundee, IL 60118 Phone (708) 931-5315

CUSTOMER'S ORDER	NO.	ACCOUNT NO. DATE / 1									
3880.	38805 E114 9/14/90										
NAME		* <u>-</u>			•	- / - / ,	<i>/</i>				
Eco/ab							•				
ADDRESS	Hwy 251 + Rockton Rd. 5 Rebit II. 61080										
Hwy 231	4 ROCKT	on Kd.	<u>ာ</u>	$-\infty$	10.7		- 1. G	1020			
OPERATOR		it No. Zo	ne C	.O.D.	On Acc	Ct. Mose	Reid Pa	id Out			
BN. 52		0011		į							
QUAN.		SCRIPTION	:	•		PRICE	AMO				
// 0 1 Solv	rent Recovery	1 70	- 41	مه		345	379	20			
165 2 Solv	rent Recovery	2/ 5		1 _V S	JU.	525	748	25			
3 Solv	rent Recovery	···		/							
4				_							
2 5 Dru	m Deposit 📅	25				2840	57				
6 Dru	m Lids										
7 Dru	m Wrenches										
8											
9											
10			T	OTAL	DUE		1585	25			
A) Solvent R	eceived		GAL	128	195						
B) Solvent R	ecovered		GAI	110	165		1				
•				ا م ا	<u>კ</u> ე						
C) Still Botto	ım		GAL	1 _ 1	20	 	 	-			
Yield %			%	86		<u> </u>	<u> </u>				
Yield % = B ÷ A	4 × 100 = %										
REC'D BY	am M	$\sqrt{N \cdot \sqrt{N}}$) ew	— س		.9-	14-9	0			
\ \	22.27	* v	<i>,</i>	-4		-I					

KEEP THIS SLIP FOR REFERENCE

5.45/36

ATTACHMENT 9

STATE OF ILLINOIS
ENVIRONMENTAL PROTECTION AGENCY
DIVISION OF AIR POLLUTION CONTROL
2200 CHURCHILL ROAD
SPRINGFIELD, ILLINOIS 62706

This Agency is authorized to require this information u illinois Revised Statutes, 1979, Chapter III 1/2, Section Disclosure of this information is required under that Sa Fallure to do so may prevent this form from being pro and could result in your application being denied, This has been approved by the Forms Management Center,

		_						
	APPLICATION FOR A D				I. O. PERMI	NO. 201	810	0 A A G 00 1 6
	AME OF EQUIPMENT TO BE OPERATION OF MONSTRUCTED OR OPERATED	ECHANICAL PLAN	T	(B)	DATE	<u>12</u>	-07	- 83
14	A. NAME OF OWNER:	i	2a.	NAME (OF CRERATOR:	 		
'`	ECONOMICS LABORATORY	ļ				ABORATORY		
16	. STREET ADDRESS OF OWNER:		2b.		ADDRESS OF			
l	HWY 51 & ROCKTON ROAD			HWY	51 & ROO	KTON ROAD		
10	C. CITY OF OWNER:		2c.		OF CPERATOR:			······································
1	SOUTH BELOIT			SOUT	H EELOI	r		
16		. ZIP COCE:	2d.		OF CPERATOR		2	e. ZIP CODE:
	IILINOIS	61080		шл	NOTS			61080
ب	,							
32	a. NAME OF CORPORATE DIVISION OR PLANT:		ЗЪ.	STREE	T ADDRESS OF	EMISSION SOURCE:		
	MECHANICAL PLANT			HWY	51 & RO	CKTON ROAD		
30	C. CITY OF EMISSION SOURCE: 3d	LOCATED WITHIN CITY	3e.	TOWNS	HIP:	3f. COUNTY:	39	. ZIP CODE:
	SOUTH BELOIT	LIMITS: YES KNO		ROSC	COE	WINNEBAGO)	61080
-						<u> </u>		
	. ALL CORRESPONDENCE TO: (TITLE AND/OR NAME	OF INDIVIDUALLY	5	751 50	HONE NUMBER	FOR AGENCY TO CALL:		
1	THOMAS GREZEK	1.011.007.0	٠.			389-3441		
6	ADDRESS FOR CORRESPONDENCE: (CHECK CHLY OF	NE)	7.	YCUR	DESIGNATION	FOR THIS APPLICATION	:N:(C)	· · · · · · · · · · · · · · · · · · ·
L	CONNER: OPERATOR	EMISSION SOURCE			MECH	PLANT		
				•				
آ `	8. THE UNDERSIGNED HERBY MAKES APPLICATION FOR FURTHER CERTIFIES THAT ALL PREVIOUSLY SUBMIT BY AFFIXING HIS SIGNATURE HERETO HE FURTHE AUTHORIZED SIGNATURE (3):(0)	ITTED INFORMATION REFS	RENCE	T NI C	HIS APPLICATI	ION REMAINS TRUE, C	CRRECT A	ND CURRENT.
ı	0 h _ / / / / _	16/2/23		•		0500719	23	
1	SIGNATURE	- 10/0/ E		37	SIGNALAE			DATE
	Thomas L. Grezek					IEPA - DAPO -	SDEI	
- [TYPED OR PRINTED NAME OF SIGNER			•		TED NAME OF SIGNER		
	Plant Manager							
1	TITLE OF SIGNER	· · · · · · · · · · · · · · · · · · ·		,	TITLE OF SIG	NER		
	(A) THIS FORM IS TO PROVIDE THE AGENCY WITH GE ONLY BE USED TO REQUEST ONE TYPE OF PERMIT	ENERAL INFORMATION ABO T - CONSTRUCTION OR GP	UT TH	E EQUIP	MENT TO BE C D NOT BOTH.	ONSTRUCTED OR OPERA	TED. TH	IIS FORM MAY
	(B) ENTER THE GENERIC NAME OF THE EQUIPMENT TO PURSUANT TO THIS APPLICATION. THIS FORM N	O BE CONSTRUCTED OR OF MUST BE ACCOMPANIED BY	ERATE OTHE	D. THE	S NAME WILL CABLE FORMS	APPEAR ON THE PERMI	KOJ HK T	MAY BE ISSUED
	(C) PROVIDE A DESIGNATION IN ITEM 7 ABOVE WHICH DESIGNATION WILL BE REFERENCED IN CORRESPONDENCED TEN (10) CHARACTERS.	CH YOU WOULD LIKE THE ONDENCE FROM THIS AGEN	AGENC ICY RE	Y TO US LATIVE	SE FOR IDENTI TO THIS APPL	FICATION OF YOUR ECLICATION. YOUR DESI	UIPMENT. GNATION	YOUR MUST NOT
	(D) THIS APPLICATION MUST BE SIGNED IN ACCORDA "ALL APPLICATIONS AND SUPPLEMENTS THERETO CONTROL EQUIPMENT, OR THEIR AUTHORIZED AG	- SPALL AF SIGNED AV TI	UE AUN	ED TWU	UDESTING UE	THE FMISSION SCHOOL	: (8 713	POLITION

IF THE OWNER OR OPERATOR IS A CORPORATION, SUCH CORPORATION MUST HAVE ON FILE WITH THE AGENCY A CERTIFIED COPY OF A RESOLUTION OF THE CORPORATION'S BOARD OF DIRECTORS AUTHORIZING THE PERSONS SIGNING THIS APPLICATION TO CAUSE OR ALLOW THE CONSTRUCTION OR OPERATION OF THE EQUIPMENT TO BE COVERED BY THE PERMIT.

	9.	DOES THIS APPLICATION CONTAIN A PLOT PLAN/MAP:	•	
		₹ YES NO		
Ì		IF A PLOT PLAN/MAP HAS PREVIOUSLY BEEN SUBMITTED, SPECIFY:		0000
			APPLICATION NUMBER	0226
		IS THE APPROXIMATE SIZE OF APPLICANT'S PREMISES LESS THAN I AC	RE?	
		TYES RY NO: SPECIFY ACRES		
┝			THE STREET AND CLEADIN BEDRESSHITE COR	OCAIT DO
	10.	XX YES NO	HAT ACCURATELY AND CLEARLY REPRESENTS COR	KENT PRACTICE.
		27 100		
L				·
١	la.	WAS ANY EQUIPMENT, COVERED BY THIS APPLICATION, OWNED OR CONTRACTED FOR, BY THE APPLICANT PRIOR TO APRIL 14, 1972:	11b. HAS ANY EQUIPMENT, COVERED BY THIS A PREVIOUSLY RECEIVED AN OPERATING PER	PPLICATION, NOT MIT:
		TYES KX NO	☐ YES 🔯 NO	
		IF "YES", ATTACH AN ADDITIONAL SHEET, EXHIBIT A, THAT: (a) LISTS OR DESCRIBES THE EQUIPMENT (b) STATES WHETHER THE EQUIPMENT WAS IN COMPLIANCE WITH THE RULES AND REGULATIONS GOVERNING THE CONTROL OF AIR POLLUTION PRIOR TO APRIL 14, 1972.	IF "YES", ATTACH AN ADDITIONAL SHEET, I (e) LISTS OR DESCRIBES THE EQUIPMENT (b) STATES WHETHER THE EQUIPMENT (i) IS ORIGINAL OR ADDITIONAL (ii) REPLACES EXISTING EQUIPMENT (iii) MODIFIES EXISTING EQUIPMENT (c) PROVIDES THE ANTICIPATED OR ACT COMMENCEMENT OF CONSTRUCTION START-UP OF THE EQUIPMENT	EQUIPMENT NT, CR NT UAL DATES OF THE
T	12.	IF THIS APPLICATION INCORPORATES BY REFERENCE A PREVIOUSLY	GRANTED PERMIT(S), HAS FORM APC-210, *DATA AN	ID INFORMATION
1		INCORPORATION BY REFERENCE" BEEN COMPLETED.		10 11 11 0 10 10 10 10 14
1		TYES XX NO		•
_		13. DOES THE STARTUP OF AN EMISSION SOURCE COVERED BY THIS	APPLICATION PRODUCE AIR CONTAMINANT EMISSI	ON IN EXCESS OF
-1		APPLICABLE STANDARDS:		
1		TYES KX NO		
		IF "YES," HAS FORM APC-203, "OPERATION DURING STARTUP"	BEEN COMPLETED FOR THIS SOURCE:	
		TYES T NO		•
		14. DOES THIS APPLICATION REQUEST PERMISSION TO CPERATE AN	EMISSION SCURCE DURING MALEUNCTIONS OF RE	FAKDOWN'S.
١		TYES AT NO	EMISSION SOCIAL DOMING MALIGINETICS CA SA	LARDOWNS:
١	<u>ات</u> ۲	IF "YES," HAS FORM APC-204, "OPERATION DURING MALFUNG	TION AND BREAKDOWN" BEEN COMPLETED FOR TH	IS SCURCE:
	ONLY	YES NO		
-	=	15. IS AN EMISSION SOURCE COVERED BY THIS APPLICATION SUBJI	ECT TO A SUT ISS COMPLIANCE DATE.	
١	ER	TIS. IS AN EMISSION SCOKE COVERED ST THIS AFFEIGNTION SUBSI	ect to a fotoxe competance date:	
-	ິບ	IF "YES," HAS FORM APC-202, "COMPLIANCE PROGRAM & PRO	JECT COMPLETION SCHEDULE. " BEEN COMPLETED F	OR THIS SOURCE:
- 1	Ž	□ YES □ NO		
1	APPLICATION FOR OPERATING PERMIT		N. COLOODE A COLONI DI ANI (DESER TO CUIDE INCE TO	2 5215005
-	Ö	16. DOES THE FACILITY COVERED BY THIS APPLICATION REQUIRE A ACTION PLANS):	N EPISODE ACTION PEAN (KEPEK TO GOIDEETINES PO	K EFISCUE
	ž	TYES XX NO		
-	7		CHI CO MITTI THE HILLIAND CONTINUE OF THE CONT	
ار	Ó	17. WAS THIS OPERATION THE SUBJECT OF A VARIANCE PETITION IN JUNE 13, 1972:	FILED WITH THE ILLINOIS POLEOTION CONTROL 303	RAD ON OR BEFORE
Ì	×	YES INO		
	7.10	IF "YES," CITE: PC3 NUMBER(S)	DATE OF BOARD CROES	
	AP	, (23, Cite: 103 140/402/43)	DATE OF JOANS ORDER	
		WAS CONSTRUCTION OR MODIFICATION OF EQUIPMENT, SUF GOVERNING THE CONTROL OF AIR POLLUTION TEFFECTIVE PR		
		TYES XX NO		
		IF "YES," EXPLAIN IN DETAIL, AND IDENTIFY EXPLANATION A	AS EXHIBIT D.	
	 	<u></u>	· · · · · · · · · · · · · · · · · · ·	
	1	 LIST AND IDENTIFY ALL FORMS, EXHIBITS, AND OTHER INFORMAT NUMBERS ON EACH ITEM (ATTACH ADDITIONAL SHEETS IF NECESS. 		CLUDE THE PAGE
		2 - Sets Form APC-260 Pages 1-6		
		3 - Sets Form APC-220 Pages 1-3		
	1			

TOTAL NUMBER OF PAGES _

STATE OF ILLINOIS ENVIRONMENTAL PROTECTION AGENCY DIVISION OF AIR POLLUTION CONTROL 2200 CHURCHILL ROAD SPRINGFIELD, ILLINOIS 62706

This Agency is authorized to require this information under Illinois Revised Statutes, 1979, Chapter 111 1/2, Section 1039, Disclor of this information is required under that Section, Failure to do so prevent this form from being processed and could result in your application being denied. This form has been approved by the For-Management Center.

*DATA AND INFORMATION	
PROCESS EMISSION SOURCE	

INCINERATOR. A FUEL COMBUSTION EMISSION SOURCE IS A FURNACE, BOILER, OR SIMILAR EQUIPMENT USED PRIMARLY FOR PRODUCING HEAT OR POWER BY INDIRECT HEAT TRANSFER. AN INCINERATOR IS AN APPARATUS IN WHICH REFUSE IS BURNED.

1. NAME OF PLANT OWNER: ECONOMICS LABORATORY	2. NAME OF CORPORATE DIVISION OR 2-ANT (IF DIFFERENT FROM OWNER):
3. STREET ADDRESS OF EMISSION SOURCE:	4. CITY OF EMISSION SOURCE:
HWY 51 & ROCKTON ROAD .	SCUTH BELOIT

	GENERAL IN	FORMATION				
5. NAME OF PROCESS: DEGREASING METAL PARTS		6. NAME OF EMISSION SOURCE EQUIPMENT: VAPOR DEGREASER				
7. EMISSION SOURCE EQUIPMENT MANUFACTU BARON/BLAKESLEE INC.	RER:	8. MODEL NUMBER:	9. SERIAL NUMBER: 22215			
 FLOW DIMORANA DESIGNATION(S) OF EMISSI IDENTITY(S) OF ANY SIMILAR SOURCE(S) AT APPLICATION, IDENTIFY THE APPLICATION): 	THE PLANT OR PREMIS	SES NOT COVERED BY THE FORM (IF THE SOURCE IS COVERED BY ANOTHE			
12. AVERAGE OPERATING TIME OF EMISSION SO 	DURCE: 50 WKS/YR	13. MAXIMUM CPERATING 3 HRS/DAY	TIME OF EMISSION SOURCE: 4 DAYS/WK 50 WKS/YR			
14. PERCENT OF ANNUAL THROUGHPUT: DEC-FE3 20 % MAR-MAY		IN-AUG 30 % SEPT-I	NOV 20 %			

* Vapor degreaser compiles with 205K

INSTRUCTIONS

- 1. COMPLETE THE ABOVE IDENTIFICATION AND GENERAL INFORMATION SECTION.
- 2. COMPLETE THE RAW MATERIAL, PRODUCT, WASTE MATERIAL, AND FUEL USAGE SECTIONS FOR THE PARTICULAR SCURCE EQUIPMENT. COMPOSITIONS OF MATERIALS MUST 3E SUFFICIENTLY DETAILED TO ALLOW DETERMINATION OF THE NATURE AND QUANTITY OF POTENTIAL EMISSIONS. IN PARTICULAR, THE COMPOSITION OF PAINTS, INKS, ETC., AND ANY SOLVENTS MUST BE FULLY DETAILED.
 EMISSION AND EXHAUST POINT INFORMATION MUST BE COMPLETED, UNLESS EMISSIONS ARE EXHAUSTED THROUGH AIR POLLUTION
- CONTROL EQUIPMENT.
- CPERATING TIME AND CERTAIN OTHER ITEMS REQUIRE BOTH AVERAGE AND MAXIMUM VALUES.
- 5. FOR GENERAL INFORMATION REFER TO "GENERAL INSTRUCTIONS FOR PERMIT APPLICATIONS," APC-201.

DEFINITIONS

AVERAGE - THE VALUE THAT SUMMARIZES OR REPRESENTS THE GENERAL CONDITION OF THE EMISSION SOURCE, OR THE GENERAL STATE OF PRODUCTION OF THE EMISSION SOURCE. SPECIFICALLY:

AMERAGE OPERATING TIME - ACTUAL TOTAL HOURS OF OPERATION FOR THE PRECEDING TWELVE MONTH PERIOD

AVERA BE RATE - ACTUAL TOTAL QUANTITY OF "MATERIAL" FOR THE PRECEDING TWELVE MONTH PERIOD, DIVIDED BY THE AVERAGE CPERATING TIME.

AVERAGE OPERATION - OPERATION TYPICAL OF THE PRECEDING TWELVE MONTH PERIOD, AS REPRESENTED BY AVERAGE OPERATING TIME AND AVERAGE RATES.

*** YIMUM - THE <u>CREATEST</u> VALUE <u>ATTAINABLE</u> OR <u>ATTAINED FROM</u> THE <u>EMISSION SOURCE</u>, OR THE PERIOD OF GREATEST OR UTMOST PRODUCTION OF THE <u>EMISSION SOURCE</u>. <u>SPECIFICALLY</u>:

MAXIMUM OPERATING TIME - GREATEST EXPECTED TOTAL HOURS OF OPERATIONS FOR ANY TWELVE MONTH PERICO.

MAXIMUM RATE - GREATEST QUANTITY OF "MATERIAL" EXPECTED PER ANY ONE HOUR OF OPERATION.

MAXIMUM OPERATION - GREATEST EXPECTED OPERA ICH. AS REPRESENTED BY MAXIMUM OPERATING TIME AND MAXIMUM RATES.

	NAME OF RAW MATERIAL		VERAGE RATE NTICAL SOURCE	MAXIMUM RATE PER IDENTICAL SOURCE	
200.		• Ь.	LB/HR	c.	L
21a.	1,1,1, TRICHIOROETHANE	ь.	.76 LB/HR	c.	-87 L3
22a.		ь.	LB/HR	с.	LS
23a.		ь.	LB/HR	c.	LS
24a.		ь.	LB/HR	с.	L3

	RO	COUCT INFORMATION		T.	
	NAME OF PRODUCT		FRAGE RATE	MAXIMUM RATE PER IDENTICAL SOURCE	
30a.	DEGREASED METAL PARTS	ь.	8.23 LB/HR	c.	10.28 L3/
31a.		ь.	LB/HR	c.	LB,
320.		b.	LB/HR	c.	L3,
33a.		b.	L3/HR	c.	L3,
34a.		ъ.	LB/HR	c.	L3,

	NAME OF WASTE MATERIAL		ERAGE RATE NTICAL SOURCE	. MAXIMUM RATE PER IDENTICAL SOURCE	
40a.	1,1,1 TRICHLOPOETHANE	b.	.74 L3/HR	c.	.85 ^{L8}
41a.		b.	L3/HR	c.	LE
42a.		ь.	L3/HR	ε.	L
43a.		ь.	LB/HR	٤.	L:
14a.		ъ.	LB/HR	ε.	L:

		·	*FUEL USAGE	INFORMATION		
FUEL USED			TYPE		HEAT CONTEN	τ
50a. NATURAL GAS		5.			e. 1000 3TU/SCF	
OTHER GAS						370/3
OIL			N/A			37U/0
COAL						3TU/1
OTHER						3TU/l
AVERAGE FIRING RATE PE	R IDENTICAL	L SOURCE:		. MAXIMUM FIR	ING RATE PER IDENTICAL SCURCE	
			BTU/HR	1		310/1

[&]quot;THIS SECTION IS TO BE COMPLETED FOR ANY FUEL USED DIRECTLY IN THE PROCESS EMISSION SOURCE, E.G. GAS IN A DRYER, OR COAL IN A MELT FURNACE.

*EMISSION INFORMATION

51. NUMBER OF IDENTICAL SOURCES (DESCRIBE AS REQUIRED):

				AVERAC	E OPERATIO	ON
CONTAMINANT	CONCENTRAT	TION OR EMISS	ON RAT	E PER IDENTI	METHOD USED TO DETERMINE CONCENTRATION OR EMISSION RATE	
PARTICULATE MATTER	52a.	GR/SCF	Ь.		LB/HR	с.
CARBON MONOXIDE	53a.	PPM (VCL)	ь.	<u></u> _	LB/HR	c.
NITROGEN OXIDES	54a.	PPM (VOL)	ь.		L3/HR	c. ·
ORGANIC MATERIAL	55a.	PPM (VOL)	ь.	.02	LB/HR	RAW MAT/HR - WASTE MAT/HR = EMMISSION
SULFUR DIOXIDE	56a.	PPM (VCL)	ь.		L8/HR	с.
**OTHER (SPECIFY)	57a.	PPM (VOL)	ь.		L3/HR	c. 1

				MAXIMU	M OPERATIO	ONN
CONTAMINANT	CONCENT SOURCE	TRATION <u>OR</u> EMISS	SION RA	TE PER IDENTI	METHOD USED TO DETERMINE CONCENTRATION OR EMISSION RATE	
PARTICULATE MATTER	58a.	GR/SCF	ь.		LB/HR	c
CARBON MONOXIDE	590.	PPM (VCL)	b.	•	L3/HR	c.
NITROGEN OXIDES	60a.	PPM (VCL)	5.		L3/HR	c.
ORGANIC MATERIAL	61a.	PPM (VCL)	ь.	.02	L3/HR	RAW MAT/HR - WASTE MAT/HR = EMMISION
SULFUR DTOXIDE	62a.	PPM (VOL)	۶.		L3/HR	с.
OTHER (SPECIFY)	టెం.	PPM (VCL)	Ь.		L3/HR	с.

*ITEMS 52 THROUGH 63 NEED NOT BE COMPLETED IF EMISSIONS ARE EXHAUSTED THROUGH AIR POLLUTION CONTROL EQUIPMENT.
***OTHER** CONTAMINANT SHOULD BE USED FOR AN AIR CONTAMINANT NOT SPECIFICALLY NAMED ABOVE. POSSIBLE OTHER CONTAMINANTS
ARE ASBESTOS, BERYLLIUM, MERCURY, VINYL CHLORIDE, LEAD, ETC.

	***EXHAUST POIN	T INFORMATION				
64.	. FLOW DIAGRAM DESIGNATION(S) OF EXHAUST POINT:					
65.	DESCRIPTION OF EXHAUST POINT (LOCATION IN RELATION TO BU	ILDINGS, DIRECTION, HOODING, ETC.):				
66.	EXIT HEIGHT ABOVE GRADE:	67. EXIT DIAMETER:				
	16 FT.	50 SO, INCHES				
68.	GREATEST HEIGHT OF NEARBY BUILDINGS:	69. EXIT DISTANCE FROM NEAREST PLANT &CUNDARY:				
	25 FT #	295 FI				
	AVERAGE OPERATION	MAXIMUM OPERATION				
70.	EXIT GAS TEMPERATURE:	72. EXIT GAS TEMPERATURE:				
	AMBIENT	AMBIENT °F				
71.	GAS FLOW RATE THROUGH EACH EXIT:	73. GAS FLOW RATE THROUGH EACH EACH EXIT:				
	ACEM	ACEM				

ATTACHMENT 10

ECOLAB

P.O. Box 1018 Beloit, Wisconsin 53511 Ecolab Inc.

Beloit Operations

Teny Switzer, DAPE

815/389-3441

November 18, 1987

RECEIVED DEC 02 1987

Illinois Environment Protection Acency Bharat Mathur, P. E. Manager, Permit Section Division of Air Pollution Control

IEPA-DAPC-SPFLD.

Mr. Mathur:

In regards to our Air Operating Permit, application No. #83120016, I.D. No #201810AAG, the permit was granted to operate emission source(s) and/or air pollution equipment consisting of a 1,1,1, Trichloroethane vapor degreaser, 3 grinders and 2 bag houses.

This will be as notice to you that we no longer use the 1,1,1, trichloroethane vapor degreaser and have removed it from the premises. We also now have 4 grinders instead of 3 grinders.

It should also be noted that our corporate name has changed from Economics Laboratory, Inc. to Ecolab Inc..

Please make the necessary changes and advise us as to any action that may be necessary on our part.

Sincerely.

Gerald J. Hall

nalo CHW

Engineer

am\

IEPA/DLPC

ATTACHMENT 11

CONTAMINANT SOURCE EVALUATION - EVERGREEN MANOR SITE

Prepared for: Ecolab Inc.

TABLE OF CONTENTS

			Page	
1.0	INTE	RODUCTION	1	
2.0	BACKGROUND AND SUMMARY OF EXISTING SITE CONDITIONS			
	2.1	SITE AREA DEFINITION		
	2.2	SITE AREA HISTORY AND PREVIOUS STUDIES		
	2.3	HYDROGEOLOGIC CONDITIONS		
	2.4	DISTRIBUTION OF VOCs IN GROUNDWATER		
		AT THE EVERGREEN MANOR SITE	10	
	2.5	POTENTIAL SOURCES OF VOC CONTAMINATION		
		AT THE EVERGREEN MANOR SITE	13	
	2.6	EVALUATION OF THE ECOLAB FACILITY	22	
	2.6.1			
	2.6.2	Plant Operations	24	
	2.6.3	Groundwater Quality on the Ecolab Property	24	
	2.6.4	Summary		
		•		
3.0		ENT INVESTIGATIONS AT THE ECOLAB FACILITY		
	3.1	FIELD ACTIVITIES		
	3.1.1	Groundwater Elevation Survey		
	3.1.2	Decontamination Procedures		
	3.1.3	Soil Boring Advancement		
	3.1.4	Piezometer Installation		
	3.1.5	Monitoring Well Installation		
	3.1.6	Piezometer and Monitoring Well Development		
	3.1.7	Monitoring Well Sampling and Analysis		
	3.1.8	Storage Garage Well Sampling	30	
	3.1.9	Surveying	30	
	3.2	GROUNDWATER FLOW DATA		
	3.3	GROUNDWATER QUALITY DATA		
	3.4	SUMMARY OF RECENT INVESTIGATIONS	32	
4.0	CON	CLUSIONS	33	
5.0	REFE	REFERENCES		

LIST OF FIGURES

FIGURE 1	SITE PLAN AND WELL LOCATIONS
FIGURE 2	REGIONAL MONITORING WELL SAMPLING RESULTS
FIGURE 3	REGIONAL GROUNDWATER FLOW DIRECTION AND PLUME DEFINITION
FIGURE 4	GROUNDWATER CONTOURS IN THE VICINITY OF ECOLAB (NOVEMBER 20, 1996)
FIGURE 5	SUMMARY OF RESULTS OF GROUNDWATER SAMPLING IN THE VICINITY OF ECOLAB

LIST OF TABLES

TABLE 1	SUMMARY OF GROUNDWATER ELEVATIONS
TABLE 2	SUMMARY OF PIEZOMETER AND MONITORING WELL DEVELOPMENT PARAMETERS
TABLE 3	SUMMARY OF MONITORING WELL PURGING PARAMETERS
TABLE 4	SUMMARY OF DETECTED ANALYTICAL DATA FOR ECOLAB AREA MONITORING WELLS

LIST OF APPENDICES

APPENDIX A	ERIIS DATABASE SEARCH
APPENDIX B	STRATIGRAPHIC AND INSTRUMENTATION LOGS FOR CRA PIEZOMETERS AND MONITORING WELLS
APPENDIX C	1996 CHAIN-OF-CUSTODY AND CERTIFICATES OF ANALYSES/GROUNDWATER SAMPLES

1.0 INTRODUCTION

This report has been prepared by Conestoga-Rovers & Associates (CRA) on behalf of Ecolab Inc. (Ecolab) in response to a notice letter from the Illinois Environmental Protection Agency (IEPA) for the Evergreen Manor Groundwater Contamination Site (Evergreen Manor Site) in Roscoe, Illinois. The IEPA provided notice to Ecolab under the Illinois Environmental Protection Act pursuant to Section 58.9(b) by letter dated September 30, 1996. Subsequent correspondence from the Illinois Office of the Attorney General on October 28, 1996 to Ecolab requested a response to IEPA's notice letter. This report provides technical information and hydrogeologic data in support of Ecolab's response to the IEPA.

The IEPA has investigated groundwater conditions at the Evergreen Manor, Olde Farm, Hononegah Heights and Tresemer Subdivisions located in Roscoe, Illinois. The primary contaminant detected above drinking water standards (Federal Safe Drinking Water Act Maximum Contaminant Levels - MCLs) has been trichloroethene (TCE). Other analytes, including tetrachloroethene (PCE), 1,1,1-trichloroethane (1,1,1-TCA) and degradation products related thereto have been observed in water samples collected from Evergreen Manor, Olde Farm and Hononegah Heights Subdivisions. Groundwater samples collected in the Tresemer Subdivision have been non-detect based upon sample analyses presented in the IEPA Screening Site Inspection Report (1992) and the IEPA Expanded Site Investigation Report. Further, these reports indicate that volatile organic compounds (VOCs), other than TCE, measured in the private wells in the Evergreen Manor, Olde Farm and Hononegah Heights Subdivisions, have been below drinking water standards. The Ecolab facility at Highway 251 and Rockton Road near South Beloit and Roscoe, Illinois is located approximately two miles northeast of these subdivisions.

Ecolab has provided the IEPA with requested information on chemical and waste handling practices at its facility on Rockton Road. This information was submitted to the IEPA by Ecolab in September 1995 and in October 1995 in response to the initial 104(e) Information Request made by the IEPA on July 20, 1995 and a Supplemental Request made September 28, 1995. Ecolab's 104(e) responses indicated that beginning sometime after 1975 Ecolab

used small quantities of 1,1,1-TCA in a vapor degreaser and small quantities of cleaning agents with PCE as a component. However, Ecolab has not used products with 1,1,1,-TCA or PCE as components since 1991. Ecolab has not used TCE at any time during its operations.

This report provides data and technical analyses which indicate that the Ecolab facility has not contributed to the TCE and other organic compounds detected in private wells in the subdivisions associated with the Evergreen Manor Site. Information presented in this report supports the conclusion that the Ecolab facility is not responsible for groundwater contamination which has been detected approximately two miles southwest of Ecolab's property. This conclusion is supported by:

- 1) groundwater flow directions measured on the Ecolab property and in the Evergreen Manor Site area;
- 2) the fact that only TCE exceeded MCLs at Evergreen Manor, yet
 Ecolab has never used TCE at its facility and TCE has never been
 detected in soils or groundwater samples collected at the facility;
- 3) the absence of any known source area or contaminated soils on Ecolab's property;
- 4) the presence of sources of TCE and other VOCs located both upgradient and downgradient of the Ecolab property;
- 5) groundwater flow velocities that could not support (assuming unattenuated movement by advection) contaminants migrating as far downgradient as Evergreen Manor in the post-1975 to pre-1991 time frames that Ecolab utilized products containing 1,1,1-TCA and PCE; and
- 6) the spatial distribution and variety of VOCs detected in the private wells of the Evergreen Manor Site.

The sources of information supporting CRA's conclusions primarily include documents received in response to Freedom of

Information Act (FOIA) requests to the IEPA, the Illinois Department of Public Health (IDPH) and the United States Environmental Protection Agency (USEPA), and data collected during groundwater investigations completed between November 19 and December 16, 1996 on and in the vicinity of the Ecolab property. CRA also performed an environmental data base search of the Site area through the ERIIS system. Additional information has been provided by personnel at the Ecolab facility and from a review of the 104(e) responses submitted to the IEPA by Ecolab.

Section 2.0 of this report summarizes pertinent data and information on Site conditions which were found in the FOIA response documents. Section 3.0 summarizes CRA's field investigations and the results of those studies. Section 4.0 of this report summarizes CRA's conclusions based upon review of historical information and based upon the recent groundwater investigations.

2.0 BACKGROUND AND SUMMARY OF EXISTING SITE CONDITIONS

2.1 <u>SITE AREA DEFINITION</u>

The Evergreen Manor Site is located east and northeast of the Rock River, near Roscoe, Illinois. The Site includes housing subdivisions located along the Rock River to the south and extends to the north and northeast toward McCurry Road (Figure 1). The IEPA has defined the Site so as to include the Evergreen Manor, Olde Farm, Hononegah Heights and possibly the Tresemer Subdivision where groundwater has been impacted by TCE at concentrations exceeding the MCL and by other chlorinated solvents at concentrations below MCLs. The Evergreen Manor Site, as defined by the IEPA, also includes industrial and commercial properties located along Highway 251 and Rockton Road. The areas identified by the IEPA also include properties owned by Waste Management of Wisconsin Inc. (formerly AAA Disposal System Inc.), Regal-Beloit Corp., and Ecolab, and each company was issued a Section 58.9 (b) notice by the IEPA. Additional commercial and industrial facilities are located in the vicinity of the Evergreen Manor Site and according to IEPA's Table 2-1 of the CERCLA Screening Site Inspection Report (1992), these include:

- Warner Electric Brake and Clutch (Warner Electric),
- Kelley Sand and Gravel,
- Roscoe Ready Mix,
- Stateline Storage,
- Roscoe Sand and Gravel,
- Stateline Printing Company,
- Kenny's Cars, Trucks and Equipment,
- State Line Foundries,
- Taylor Design,
- Inlander-Steindler Paper Company,
- Midwest Precision Grinding,
- Makerite Manufacturing,
- McGuire Brothers Auto Body,
- Rockford Steam Boiler Works,
- Oscar's Auto Battery and Clinic,

- Dayles Welding,
- Armour Specialty, Inc.,
- RD Systems,
- Area Elevator and DGM,
- Electro Cam Corporation,
- Preston 151,
- Indicon Midwest,
- Top Die Casting Company,
- Ruan,
- Elevator (Grain), and
- RBR Trucking.

According to IEPA, the Evergreen Manor Site area generally comprises an area extending two miles in length and approximately one half mile in width, oriented in a northeast-southwest direction.

The Evergreen Manor Site has been distinguished by IEPA from the nearby Warner Electric Site which includes the Hononegah Country Estates Subdivision and Morehaven Subdivision. The Warner Electric Site involves the contamination of groundwater, also by TCE and other chlorinated solvents, which originates at the Warner Electric facility along Highway 251 and McCurry Road and extends toward the Rock River (Figure 1). Similar chemicals have been detected in the groundwater at the Warner Site as those detected at the Evergreen Manor Site, predominantly TCE. The IEPA has suggested that two "plumes" resulting from different sources have contaminated groundwater in the Evergreen Manor Site and the Warner Electric Site (IEPA Screening Site Inspection Report, September 1992). The plumes of the two Site areas are separated by approximately 1,500 to 2,000 feet, according to IEPA documents.

2.2 <u>SITE AREA HISTORY AND PREVIOUS STUDIES</u>

The TCE contamination of groundwater at the Warner Electric Site was discovered in 1983 during a Winnebago County Public Health Department study of nitrate contamination of private well water in

the Hononegah Country Estates Subdivision. Due to concerns about elevated nitrate levels in groundwater, Winnebago County authorities had originally included installation of a public water supply as a condition to permitting development of the subdivision; however, a public water supply was not installed as the subdivision developed. Therefore, it is apparent that prior to the discovery of TCE in private wells in the Evergreen Manor Site area, there were already concerns regarding regional groundwater quality.

In response to TCE contamination impacts detected in initial studies, the IEPA installed monitoring wells and completed additional studies in 1983 (Greetis, August 1983). An additional study was completed by H. Wehrmann of the Illinois Department of Energy and Natural Resources (Wehrmann, August 1984). In 1986 the IEPA undertook a two year study of groundwater contamination in Winnebago County. According to an IEPA Groundwater Study Report dated November 1988, approximately 28 percent of the public water supply wells in Winnebago County have shown quantifiable levels of at least one VOC (primarily TCE and PCE) (Clarke and Cobb, November 1988).

During 1983 to 1985 Warner Electric performed a series of soil and groundwater studies on their facility located to the northeast of the contaminated private wells in the Hononegah County Estates Subdivision. Warner Electric installed a deep bedrock water supply well and a water distribution system for certain impacted residences. Other remedial actions have been completed by Warner Electric, including the closure of two surface impoundments and removal of 16,000 tons of TCE-contaminated sludges. During 1983 to 1984, the Warner Electric facility also closed out TCE and other storage tanks and a barrel storage area, and decontaminated utility trenches. Groundwater investigations were initiated at this facility as early as 1983.

In 1990 groundwater samples were collected at a private well in the Evergreen Manor Subdivision and TCE was detected above MCLs. The Illinois Department of Public Health (IDPH) initiated an area-wide sampling program of private wells in the area. Results indicated that 89 of the 179 private wells sampled contained detectable concentrations of chlorinated solvents with TCE being the primary contaminant of concern. The USEPA performed a soil gas survey in 1992 at areas upgradient

(northeast) of the impacted subdivisions. The IEPA completed a monitoring well installation and sampling program during 1993 to 1995. Of the 24 monitoring wells installed primarily to the northeast of the impacted subdivisions, three monitoring wells had concentrations above the MCLs. The IEPA conducted a records review and site reconnaissance in 1994 in order to assess potential sources of the VOC contamination. This process included the issuance of 104(e) letters in 1995 to a number of commercial and industrial facilities.

The IEPA, USEPA and their contractors have issued a number of reports and data packages regarding the Evergreen Manor Site. These have included:

- a Preliminary Assessment Report (IEPA, January 1992);
- a Soil Gas Survey Report for the Evergreen Manor Subdivision (Lockheed Engineering, June and August 1992);
- a Screening Site Inspection Report (IEPA, September 1992);
- a Monitoring Well Installation Report (Riedel Environmental, February 1994);
- an Expanded Site Inspection Report (IEPA, undated); and
- groundwater sampling results (IEPA, 1994 and 1995).

2.3 HYDROGEOLOGIC CONDITIONS

The report prepared by Wehrmann in August 1984 provides an overview of hydrogeologic conditions in both the Evergreen Manor and the Warner Electric Site areas. In addition, Wehrmann's previous report (August 1983) also contains information on area hydrogeologic conditions. The following discussion presents a summary of pertinent hydrogeologic conditions as they apply to the Evergreen Manor Site.

The area is underlain by a deep bedrock valley trending north-south, which has been filled by glacial and fluvial sediments. The bedrock comprises the St. Peter Sandstone and is found at depths of over 200 feet in the Site area. The surface of the bedrock is deepest to the west of the Site area near the Rock River. The bedrock surface rises to the east and to the west of the Rock River Valley. The bedrock valley has been filled predominantly with glacial outwash sands and gravels.

The glacial fluvial deposits encountered beneath the Site area are highly permeable and water supply wells usually have large yields. Wells drilled in the upper 100 feet of these glacial fluvial deposits have reported yields as high as 600 to 800 gpm. The surface soils are also highly permeable, resulting in significant amounts of precipitation recharge to the underlying sand and gravel deposits. The hydraulic conductivity of the upper 100 feet of the sands and gravels ranges from 3.1×10^{-2} cm/sec to 1×10^{-1} cm/sec (Wehrmann, August 1984). Depth to water in the sand and gravel deposits underlying the Site area is in the range of 30 to 40 feet below ground surface. The water table generally follows the topographic grade and slopes toward the Rock River Valley.

The IEPA monitoring wells installed in 1993 are generally grouped into clusters. These clusters contained one shallow monitoring well, approximately 45 to 50 feet deep, and one deep monitoring well, approximately 60 to 80 feet deep. The water levels measured in the wells have generally been similar, suggesting predominantly horizontal flow within the upper 100 feet of the sand and gravel deposits. Significant downward or upward hydraulic gradients have not been observed in the Site area.

Regional groundwater flow directions have generally remained constant over the last 14 years of investigations in the Evergreen Manor Site area. Groundwater flow directions based upon water level measurements made by Wehrmann in 1982 as part of the nitrate study are similar to those measured in 1983 by Wehrmann and later in 1992 and 1995 by the IEPA. Groundwater flow in the upper 100 feet of the sand and gravel deposits was generally to the southwest and towards the Rock River. The

westerly component of flow, however, varies with the distance from the river. Groundwater flow direction in the southern portions of the Site and closer to the Rock River has a smaller westerly component. The groundwater flow direction developed by the IEPA in 1993 to 1995 using monitoring wells farther north and east of the Rock River have indicated flow more to the west southwest. Regional groundwater flow directions depicted by Wehrmann (August 1983) also demonstrate a westerly component of groundwater flow in areas northwest of the Evergreen Manor Site.

Groundwater flow velocity in the Evergreen Manor Site area has been estimated by Wehrmann (August 1984) to average close to one foot per day (365 feet per year). This value is based upon the following Darcy's Law calculations presented by Wehrmann (August 1984) on pp. 50:

$$V_a = \frac{Ki}{n_e}$$

where:

 V_a = advective velocity

K = hydraulic conductivity

 n_e = effective porosity

i = hydraulic gradient

specifically at the Evergreen Manor Site:

$$K = \frac{800 \text{ gallons per day}}{\text{ft}^2} = 107 \text{ ft/day}$$

i = 0.0022 ft/ft

 $n_e = 0.25$

and Va = 0.94 ft/day or 1 ft/day

Using this calculated average horizontal groundwater velocity, the time required for groundwater originating in the area of Rockton Road and Highway 251 to travel to the Rock River near the Evergreen Manor Subdivision would be approximately 30 years.

2.4 DISTRIBUTION OF VOCs IN GROUNDWATER AT THE EVERGREEN MANOR SITE

Studies by the IEPA, USEPA and the Winnebago Department of Public Health have delineated an area of groundwater impacted by VOCs. These VOCs have included primarily chlorinated solvents such as TCE, PCE, 1,1,1-TCA and their degradation products. TCE has been the only unqualified VOC detected above MCLs in private wells within the subdivisions (Expanded Site Inspection Report). This information has been documented in numerous reports by the IEPA. Figure 2 presents a summary of VOCs detected in IEPA monitoring wells in the area of the Evergreen Manor Site. Figure 3 outlines the general extent of VOCs detected in private wells in the subdivisions.

The results of groundwater sampling performed to date by the IEPA and others suggest the following trends:

- VOCs detected in the private wells in the Evergreen Manor Subdivision and nearby subdivisions are dominated by TCE with lesser concentrations of 1,1,1-TCA, and TCE degradation or transformation products (such as cis-1,2-DCE).
- The extent of detectable concentrations of TCE in private wells in the Evergreen Manor and nearby subdivisions is from McCurry Road on the north to the Rock River on the south. The detectable VOCs extend from the east at Straw Lane and Hononegah Road to the west toward Tresemer Road and Hononegah Road (Figure 3).
- The highest concentrations of TCE are measured in private wells located in the eastern subdivisions and centered along Blue Spruce Drive.
- Past sampling events at the IEPA monitoring wells located north
 of the subdivisions indicate that TCE was not observed at areas
 northeast of the AAA Disposal/WMI facility.

- The VOCs detected most frequently in monitoring wells northeast of the AAA Disposal/WMI facility and in areas north of Rockton Road were from samples collected in the shallower monitoring wells. In general, monitoring wells completed at depths of 40 to 60 feet below grade indicated higher concentrations than the deeper wells at the same location.
- Past sampling events at the IEPA monitoring wells located southwest of the AAA Disposal/WMI facility have indicated the most frequently detected VOCs to include TCE, PCE and 1,1,1-TCA.
- The VOCs detected in monitoring wells south and west of the AAA Disposal/WMI facility were most frequently detected in deeper monitoring wells. Groundwater quality data reviewed to date indicates that the deeper zone (depths of 60 to 80 feet below grade) was more contaminated than the shallow groundwater zone in the area southwest of the AAA Disposal/WMI facility.
- Groundwater samples collected from the Ecolab production wells (125-150 feet deep) in 1983 did not detect VOCs.
- A groundwater sample collected from a third Ecolab production well (servicing the storage garage) in November 1996 did not indicate detectable VOCs.
- A soil gas survey performed in 1992 by Lockheed Engineering for the IEPA and USEPA did not detect concentrations of TCE, 1,1,1-TCA and 1,1-DCE on the Ecolab property. A grab groundwater sample collected during the soil gas survey did not detect VOCs. This grab groundwater sample was collected below the basin of the former rinse water impoundment.
- A groundwater sample collected from the AAA Disposal/WMI facility production well in 1983 indicated the presence of TCE, PCE, 1,1,1-TCA and other VOCs.

- VOC-contaminated groundwater has been documented at the Warner Electric facility at the southeast corner of McCurry Road and Highway 251 and extending to the southwest toward the Hononegah Country Estates Subdivision east of the Evergreen Manor Site. VOC contamination in this area is primarily by TCE.
- Depth of groundwater contamination at the Evergreen Manor Site and at the Warner Electric Site is generally limited to depths of less than 100 feet based upon the existing monitoring well data.
- Assuming groundwater flow velocities of approximately 365 feet/year estimated by Wehrmann (August 1984), a distance of approximately two miles from Rockton Road at Highway 251 to the Evergreen Manor Subdivision and that contaminant migration is by an advective mechanism without attenuation of any sources, this location would need to have been active with chlorinated solvents as early as 1960 to 1965. Specifically, VOCs, if released to groundwater at the Ecolab facility, would have had to enter the underlying groundwater by approximately 1960 to 1965.
- The only contaminant exceeding IEPA's 35 IAC 620 Class I standards or MCLs at the Evergreen Manor Subdivision is TCE. Ecolab neither used TCE nor observed it in monitoring wells or soils located on its property.
- The concentration of PCE observed in one well along the former railroad tracks on the western margin of Ecolab's property (G103s) in December 1996 is much lower than the maximum TCE concentrations observed approximately two miles away at the Evergreen Manor Site. These concentration differences indicate that the PCE detected on the Ecolab property could not be the source of TCE through degradation and transformation process in the groundwater system.

Groundwater sample data from monitoring wells installed and sampled by the IEPA in 1994 and 1995, along with recent sampling data collected by CRA in November and December 1996, indicate that the spatial distribution and variety of VOC contamination are different in locations north of the AAA Disposal/WMI facility from those observed south of this facility. The area of groundwater contamination corresponding to the areas along Rockton Road, northeast of AAA Disposal/WMI, is characterized by the shallow occurrence of chlorinated solvents, predominantly PCE and 1,1,1-TCA (but not TCE). The area of groundwater contamination located to the south and west of the AAA Disposal/WMI facility is characterized by the occurrence of different chlorinated solvents such as TCE and cis-1,2-DCE. PCE and 1,1,1-TCA are also detected in this area, but VOC contamination occurs predominantly in the deeper groundwater zone.

2.5 POTENTIAL SOURCES OF VOC CONTAMINATION AT THE EVERGREEN MANOR SITE

A number of potential sources have been identified by the IEPA in the past (Screening Site Inspection Report, September 1992) and 104(e) request letters have been submitted to some of these industries. CRA's review of the IEPA documents received in response to FOIA requests and review of 104(e) responses have indicated the following facilities as sources of VOCs contributing to groundwater contamination in the vicinity of the Evergreen Manor Site:

- Waste Management of Wisconsin Inc./AAA Disposal;
- Regal-Beloit Corporation; and
- Warner Electric.

The following additional potential sources were identified in an ERIIS search performed by CRA (Appendix A):

- State Line Foundries;
- Makerite Manufacturing;
- Electro Cam Corporation;
- a former landfill associated with the Beloit Foundry Co.;
- COLTEC, formerly Colt Industries;
- a former landfill located behind the Stateline Printing facility;
 and
- Kelley Sand and Gravel.

Regal-Beloit:

The Regal-Beloit facility, located just north and east of the Ecolab facility, is a potential source for groundwater contamination at the Evergreen Manor Site. This facility has operated continuously since 1955 and, therefore, historical releases of VOCs have had sufficient time to travel to the Evergreen Manor Subdivision in the groundwater. The Regal-Beloit facility has been involved with the manufacture of steel cutting tools and has used chlorinated solvents as part of manufacturing and maintenance operations. Solvents were used in degreasing prior to heat treatment of the products. Reportedly, 1,1,1-TCA replaced TCE use in 1982, although there is some indication of later TCE use based upon a 1986 IEPA inspection report.

According to its 104(e) response, the facility has generated a total over 600 gallons of waste 1,1,1-TCA solvents from 1982 to 1993. The same response indicated that Regal-Beloit generated an estimated total of more than 600 gallons of spent "1,1,1-Trichloroethylene" from 1982 to 1994. (This chemically-incorrect compound name apparently refers to TCE.) The use of TCE at the Regal-Beloit facility is further supported by detected concentrations of the compound in soils and water samples collected in their septic system in 1984 and the presence of TCE in soils around its hazardous waste storage facility.

Potential sources of TCE and 1,1,1-TCA groundwater contamination at the Regal-Beloit facility which may have released these and other VOCs to the underlying groundwater include:

- a hazardous waste storage facility which was closed under RCRA in 1987;
- five underground storage tanks (USTs) which were closed in 1986. These tanks ranged in size from 1,000 gallons to 1,500 gallons and contained lube oil, mineral spirits, cutting oil, and used oil/water (two tanks);
- a septic system and leach field which was investigated in 1984;
 and
- according to the ERIIS search performed by CRA (Appendix A), a landfill existed in the vicinity of the property which contained municipal sewage sludge, industrial hazardous solid waste and hazardous liquid wastes.

The Regal-Beloit facility had a RCRA part A Permit and was inspected by the IEPA on numerous occasions. In the May 9, 1986 inspection report, IEPA staff described the Site as containing ponded oil one inch deep in areas. Regal-Beloit was informed that the site would have to be cleaned up to regain compliance with the Environmental Protection Act.

The hazardous waste storage facility was discontinued in 1985, but had been permitted under RCRA for the storage of hazardous wastes. Reportedly, drums of waste solvents and other materials were stored at this facility. The closure plan was implemented in 1986 and confirmatory samples were collected in 1987. Soil samples indicated the presence of TCE and 1,1,1-TCA.

Five USTs were used at the Regal-Beloit facility until 1986. These USTs were apparently used for the storage of lube oil, mineral spirits, cutting oil, and used oil/water (two tanks). These tanks ranged from 1,000 to

1,500 gallons, were of steel construction and were installed in approximately 1970. Apparently, no confirmatory sampling was performed upon removal of the tanks.

The septic system at Regal-Beloit was investigated in 1984 at the request of the IEPA. This system received discharges of rinse water from the chrome plating line and from a nitride case hardening process. Composite soil samples were collected and grab water samples were collected below the water table. Most samples were analyzed for metals; however, a septic residue sample and water sample were analyzed for select VOCs and indicated the presence of PCE and 1,1,1-TCA.

In summary, because there is documentation indicating the release of TCE, PCE and 1,1,1-TCA to soils and groundwater at the Regal-Beloit facility, and because the facility operations have a history which would allow the over 30 years of travel time to the Evergreen Manor private wells, the facility should be considered a source of contamination at the Evergreen Manor Site. In addition, because the Regal-Beloit facility is located upgradient of the Ecolab facility, it should also be considered a source of groundwater contamination detected in monitoring wells on the Ecolab property.

Waste Management of Wisconsin/AAA Disposal

The Waste Management of Wisconsin/AAA Disposal facility is located south of the Ecolab property. The facility first operated as AAA Disposal sometime around 1973 until 1988 when Waste Management of Wisconsin purchased the operations. The facility has operated as a waste hauling and transfer station. The facility contained fuel storage USTs ranging in size from 10,000 gallons to 600 gallons. Apparently, in 1993 during removal of an UST at the facility the representative from the State Fire Marshall's office observed solvent odors at the UST excavation. According to the 104(e) response from Waste Management of Wisconsin, the facility contained dry wells, which have been subsequently abandoned. Truck washing and maintenance was part of the waste hauling and transfer operations.

The IEPA Division of Land Pollution Control inspected the facility in February 1975. At that time it was observed that waste oil and septic tank pumpings were being accepted at the facility without proper permits. The inspection also indicated the presence of drums containing hazardous liquids. During a March 24, 1976 inspection, an IEPA representative observed a large volume of oily waste material deposited in an excavation located along the railroad tracks on the east side of the property. During a later IEPA inspection on September 20, 1977, an IEPA representative observed several oily-liquid disposal areas near the railroad tracks along the east side of the property.

As mentioned previously, the production well at the AAA Disposal facility was sampled by the Winnebago Department of Public Health in 1983 and samples indicated concentrations of TCE, PCE, 1,1,1-TCA and other VOCs ranging from 12 to 107 parts per billion (ppb). Soil samples collected at the facility for Waste Management of Wisconsin in 1988 detected fuel components such as benzene, toluene and xylene. Monitoring wells were installed on the facility in 1989 and groundwater samples indicated the presence of PCE, 1,1,1-TCA and TCE in the 2 to 10 ppb range. In addition, PCE was detected in soils collected as part of the 1989 groundwater study. Foundry sands present on a portion of the AAA Disposal/WMI facility were also sampled in 1989 and some of these samples indicated the presence of TCE and PCE. The AAA Disposal/WMI facility also responded to the IEPA in February 1994 regarding a floor drain in the transfer station which drained to a septic system.

This facility should be considered as a source of groundwater contamination at the Evergreen Manor private wells and at areas west of Highway 251 and north of McCurry Road.

Warner Electric

Although the Warner Electric facility is located due east of the Evergreen Manor Site and has been identified by IEPA as a separate groundwater contamination Site, CRA considers this facility as a potential source of TCE and other VOC contamination of the private wells in the Evergreen Manor Subdivision. Studies have been performed at the Warner Electric facility in response to the groundwater contamination at the Hononegah Country Estates Subdivision and as a result of RCRA requirements at the facility. These studies and history of the Site are located in the IEPA files for the Warner Electric Site.

The Warner Electric facility should remain under consideration as a source for the Evergreen Manor Site contamination because there have been documented releases of TCE, 1,1,1-TCA, and PCE at the facility, and because there is a westerly component of groundwater flow at the facility. The Warner Electric facility has documented the use of large quantities of chlorinated solvents such as TCE, PCE and 1,1,1-TCA which are detected in the private wells in the Evergreen Manor Site. Waste streams containing chlorinated solvents generated at the facility included waste paint-related materials (F005), still bottoms (F002) and used solvents (F001). At one time, the facility used four large degreasers. In 1989 the facility generated two drums of still bottoms per year and about 84 drums of waste solvents per year. Prior to 1977, open trenches were located in the process area and were connected to surface impoundments. In 1983 Warner Electric removed 16,000 tons of contaminated sludges containing TCE from the impoundments. In addition, TCE and other underground storage tanks (with capacities of 8,000 gallons) and the barrel storage area were closed. Information reviewed for the Warner Electric facility indicates that hazardous wastes generated in 1983 were as high as 109,000 gallons/year and were reduced to approximately 22,000 gallons/year by 1985. These waste streams would have included TCE and other chlorinated solvents.

TCE is the predominant chlorinated solvent detected in the private wells at the Evergreen Manor Site and the only VOC above MCLs. The Warner Electric Facility should be considered a source of groundwater contamination due to the long history of heavy TCE use and the presence of a westerly component of groundwater flow on the facility.

State Line Foundries

The State Line Foundries facility is located just north of the AAA Disposal/WMI facility. The foundry is located northeast and upgradient of monitoring wells installed by the IEPA which indicate the presence of VOCs. The foundry has been in operation since at least 1956 and has been operating as State Line Foundries since 1969. The facility manufactures gray and ductile iron castings.

As part of operations, the foundry generates foundry sand wastes and paper wastes. The facility contains two USTs, one for gasoline storage and one for water storage. A septic system and leach field exists on the facility for sanitary purposes. The facility has also utilized a parts washer which has been supplied by Safety-Kleen since 1995. No information was available in the 104(e) response or FOIA response regarding pre-1995 parts washing practices.

Because the State Line Foundries facility is located upgradient of monitoring wells with VOC contamination, because it has been in operation since at least 1956, and because the 104(e) response indicated the use of a parts washer, this facility should be considered a potential source of groundwater contamination.

Makerite Manufacturing Co.

This facility is located north of Ecolab and is involved with precision machining for the aerospace industry. Although the facility has only been in operation since 1978, it is reviewed as a potential source of the groundwater contamination which has been detected on the Ecolab property. The facility is classified as a small quantity generator under RCRA, generating less than 1,000 kg of solvent wastes (D001) per month. The facility currently uses two parts washers from which waste solvents are generated at the rate of 40 to 50 gallons per month. Makerite also generates a water soluble coolant waste, which is stored in two 250-gallon tanks.

Electro Cam Corporation

The Electro Cam Corporation facility, located north of the Ecolab facility, is listed in the Illinois Underground Storage Tank Report (a comprehensive listing of all registered USTs located in Illinois). The registered tank(s) has/have been closed. Electro Cam Corporation is involved with the manufacturing of electronic rotary cam limit switches. The facility's sewer system consists of a septic tank and leach field. The facility filed a Class V Injection Well Inventory form in December 1994. Operations at this facility generate waste solvents from parts washers (D001). Waste manifests provided as part of the 104(e) response indicate waste aliphatic and aromatic hydrocarbons. Consequently, this facility should be considered as a potential source of groundwater contamination, at least in the area of Ecolab.

Former Landfill Associated with the Beloit Foundry Co.

According to the information presented in the ERIIS database search (Appendix A) the Beloit Foundry Co. has reportedly closed a landfill located northeast of the Regal-Beloit facility. The former landfill site is listed in the Illinois Land-Based Disposal Site (LBDS) Report, an inventory of all active and historical waste disposal sites located in Illinois. The waste streams disposed of in the landfill are described in the ERIIS Report as non-hazardous waste and unknown waste. Due to the limited information about the location of this site and the lack of detailed reporting, this facility may be considered as a potential source of groundwater contamination.

Colt Industries/Fairbanks Morse

The Colt Industries facility (formerly known as the Fairbanks Morse facility and currently named COLTEC), located approximately 1.3 miles east of the Ecolab facility, is listed in the Resource Conservation and Recovery Information System - Small Quantity Generators Report by both names. This report contains information pertaining to facilities which either generate between 100 kg and 1,000 kg of EPA regulated hazardous waste per month or meet other applicable requirements of the

Resource Conservation and Recovery Act. Hazardous wastes listed for the facility are solid wastes (EPA Hazardous Waste Numbers D001 and D002), solvents (F001 and F002) and methyl chloroform (U226). Due to the known presence of solvents, this facility should be considered as a potential source of groundwater contamination.

Former Landfill Behind the Stateline Printing Facility

A landfill located behind the Stateline Printing facility appears in the ERIIS-LBDS Report. The waste type for the landfill is described as non-hazardous waste. This location may be considered a potential source of groundwater contamination.

Kelley Sand and Gravel

This facility is located at the southwest corner of Highway 251 and McCurry Road. On March 19, 1974 an IEPA representative observed open dumping and waste material on the Kelley Sand and Gravel property. The waste apparently included some foundry sand. On April 23, 1974, the IEPA also observed refuse dumped on the property. Given the open-pit nature of sand and gravel mining operations and the facility's location northeast and upgradient of the Evergreen Manor Subdivision, this facility should be considered as a potential source of groundwater contamination.

Other Potential Sources

Other potential sources of VOCs detected at the Evergreen Manor Site and at the Ecolab property may exist in the industrial park north of Ecolab. However, existing IEPA file information is insufficient to identify any one company specifically based on chemical and waste handling records.

2.6 EVALUATION OF THE ECOLAB FACILITY

CRA's review of Ecolab's 104(e) responses, purchasing records and MSDS sheets, discussions with facility personnel on November 11 and December 16, 1996, and assessment of groundwater data on the Ecolab facility provide sufficient information to evaluate whether or not Ecolab is a potential source of the groundwater contamination at the Evergreen Manor Site. Based on CRA's review, this facility has not contributed to the TCE and other VOC contamination measured in private wells at the Evergreen Manor Site.

2.6.1 Plant Operations

The Ecolab facility produced soap and detergent cleaning products for the food industry from approximately 1959 to July 1974. TCE, PCE and 1,1,1-TCA were not used at the facility during this time.

After 1975, the plant assembled dispensing equipment for cleaning products. Ecolab's assembly operation involved the welding and fabricating of stainless steel equipment. In order to remove film and grit, it became necessary to use degreasing agents in the assembly process. A 120-gallon Baron/Blakeslee Inc. vapor degreaser (Model HL-600) was installed at the facility sometime between 1975 and 1978.

The vapor degreaser was located in the "Salvage Department", but was small enough to be moveable. According to the 1983 Air Permit Application, it was used on the average for one-half hour per day for just two days a week. This vapor degreaser used inhibited (or stabilized) 1,1,1-TCA. Solvent levels or volumes were not replenished on a continuous basis. The solvent was used in the unit until the liquid level was down to the sludge. At that point in time, the unit was moved to a loading dock area within the plant building and the sludge removed and containerized in 55-gallon drums. The cleaning of the vapor degreaser occurred approximately every one to two years.

In May 1987, the use of the vapor degreaser was discontinued because Ecolab ceased manufacturing equipment that required the degreasing operation. After 1987, other parts and equipment required cleaning, and this was accomplished for approximately one year with a "Magna" parts washer and two five-gallon parts washers. In approximately 1988/1989, three small "Miji" parts washers replaced the "Magna" parts washer. The "Mijis" were closed systems with liquid capacities of approximately fifteen to twenty gallons. Reportedly, the small parts washers used primarily petroleum distillate solvents referred to as Mangus No. 2 and Magnus No. 5. The Magnus No. 2 contained 30% 1,1,1-TCA and the Magnus No. 5 contained 55% PCE. Viking Safe-Solv, which contained 25% PCE, was used in 1988. The use of these solvents in the small parts washers was discontinued in 1991. TCE was never used at the Ecolab facility.

The materials used in the vapor degreaser and in the small parts washers were stored inside the plant in a locked, bermed and fireproofed storage room. The waste solvents and the sludge generated from the degreasing units were also stored in this room, all in 55 gallon drums. During 1987 to 1990, the solvents were recycled at the plant by an outside vendor. At all times, all waste solvents and sludges were shipped off-site for disposal.

According to plant records from 1984 to 1991 the Ecolab facility purchased only 990 gallons of 1,1,1-TCA, or less than 150 gallons per year on the average. A similar rate of use is expected for the period from 1978 to 1984. The amount of Viking Safe-Solv (used only in 1988) was less than 275 gallons.

The plant records and the employee interviews indicated that no spills from the parts washers occurred during operations with one exception. Reportedly, during a filling operation a valve was found to leak. Less than one gallon drained onto the concrete floor and was quickly contained and removed for disposal. No other spills are known to Ecolab for the vapor degreaser or the parts washers, or during raw product and waste solvent handling.

2.6.2 Wastewater and Water Supplies

Septic systems with leach fields exist at the Ecolab facility, but receive only domestic wastewater. Cooling and rinsate water had been discharged to an impoundment in the past. This impoundment was an old borrow pit which was dry under normal conditions. The waters discharged to the leach fields and to the impoundment did not receive any materials associated with the vapor degreaser or parts cleaners. The rinsate waters were associated with processes containing only inorganic chemicals and the leach fields were not used for any purpose other than non-process/domestic wastewater. Consequently, neither of these sewer systems could have been a pathway for solvents used in the facility. This statement is supported by soil, water and soil gas samples collected on the Ecolab property and described in Section 2.6.4.

The Ecolab facility had used two production wells on the property for water supplies within the main manufacturing area until 1995. A third well is located near the storage garage. The two production wells used for the facility were 150 and 125 feet deep. The third well is expected to be of similar depth as the production wells. Annual pumping rates for these two wells combined was on average less than 6,000 gallons per day or approximately 4 gpm. The two production wells were sampled in the 1980s and TCE, PCE, 1,1,1-TCA and other solvents were not detected in the well water. The two production wells were closed and properly abandoned in 1995. The third well was sampled in November 1996 and did not detect VOCs (refer to Table 4).

2.6.3 Groundwater Quality on the Ecolab Property

The concentrations of VOCs measured in groundwater samples collected from IEPA monitoring wells on the Ecolab property (G102s, G102d, G103s, G103d, and G111) have indicated PCE, when detected, at concentrations as high as 17 ppb. The 1995 sampling event by the IEPA reported PCE to be present at a concentration of 43 ppb, but this was an estimated value. 1,1,1-TCA has been detected at concentrations lower than 16 ppb and 1,1-DCA has been detected in past IEPA samples at a concentration

of 4.4 ppb. A recent sampling event performed in December 1996 provides new information on these monitoring wells and is discussed further in Section 3.0.

In June 1992, Lockheed Engineering conducted a soil gas survey on the Ecolab property for the USEPA/IEPA. No VOCs were detected in the two soil gas samples collected on the Ecolab property. One sample of soil gas and of grab groundwater were collected within the former rinsewater impoundment. No organic vapor analyzer (OVA) readings occurred at this location. According to the Lockhead Engineering soil gas report (June 1992) the grab water sample did not contain detectable VOCs.

2.6.4 Summary

In summary, the low volume of solvents used, the proper chemical handling procedures by Ecolab, off-site disposal practices, and the results of soil and groundwater analyses on the Ecolab property all indicate that the facility is not a source of TCE or other VOC contamination at the private wells in the Evergreen Manor Subdivisions.

The post-1975 timing of parts cleaning at Ecolab further indicates that the facility did not contribute to groundwater contamination at private wells in the Evergreen Manor Site. The history of chlorinated solvent use at the Ecolab facility does not allow for sufficient travel time for groundwater to move from the facility to the Evergreen Manor private wells. Reportedly, the use of the vapor degreaser did not occur until sometime during 1975 to 1978 at the Ecolab facility. The first discovery of chlorinated solvents in private wells in the Evergreen Manor Subdivision was in 1990. This allows only 12 to 15 years for groundwater to move the approximately two mile distance from the Ecolab facility to the north end of the Evergreen Manor Subdivision. This would equate to a groundwater flow rate of over 800 feet per year, which is unrealistic and much greater than the average rate calculated by Wehrmann (1984) of 365 feet per year. Consequently, not only would it be impossible for groundwater to flow this distance in such a short period of time, but also any potentially released chlorinated solvents would

also need to travel vertically through the 40 feet of unsaturated soils before entering the groundwater system.

CRA initiated additional field investigations at the Ecolab facility and at nearby properties to further evaluate Ecolab's potential as a source of groundwater contamination in the private wells at the Evergreen Manor Subdivisions. These additional investigations are described in the next section.

3.0 RECENT INVESTIGATIONS AT THE ECOLAB FACILITY

This section outlines the methods and results of recent studies performed by CRA at the Ecolab facility. The purpose of these investigations was to collect data to assess whether the Ecolab property was potentially contributing VOCs to the plume of contaminated groundwater located approximately two miles to the southwest in the Evergreen Manor Subdivision.

3.1 FIELD ACTIVITIES

Field activities were conducted from November 19, 1996 through November 21, 1996 and from December 2, 1996 through December 4, 1996. Boart Longyear of Schofield, Wisconsin was retained by CRA to perform drilling activities. Two piezometers and three monitoring wells were installed at the locations shown on Figures 1 and 4.

3.1.1 Groundwater Elevation Survey

Depth to groundwater was obtained at the two newly installed piezometers and five existing monitoring wells on November 20, 1996. Water levels were measured in each piezometer using a decontaminated electronic water level tape. Table 1 presents these elevations.

3.1.2 <u>Decontamination Procedures</u>

Drilling and sampling equipment was decontaminated prior to use and after each sample was collected to prevent cross-contamination between samples. Drilling equipment was decontaminated using a low volume high pressure hot water wash. Sampling equipment was decontaminated by washing with potable water and AlconoxTM detergent and by rinsing with potable water.

3.1.3 Soil Boring Advancement

Five boreholes were advanced using 4 1/4-inch inside diameter (ID) hollow stem augers (HSA). Soil samples for stratigraphic characterization were collected at five foot intervals using a split spoon sampler. Soils were described according to the United Soil Classification System (USCS). A representative sample was obtained from the opened split spoon, placed in a clean glass jar for head space analysis and screened using a photoionization detector (PID) to analyze the presence of organic vapors. Soil cuttings were disposed of on-Site.

3.1.4 Piezometer Installation

Two piezometers (P-1 and P-2) were installed at the Site. Upon completion of a borehole, a piezometer was constructed within the augers as they were withdrawn from the borehole. Piezometers consisted of five-foot long lengths of 10-slot (0.010 inch) machine slotted schedule 40 polyvinyl chloride (PVC). Riser material consisted of flush threaded schedule 40 PVC pipe. Piezometers were completed with above-grade protective stand pipes. Stratigraphic and Instrumentation Logs are presented in Appendix B.

3.1.5 Monitoring Well Installation

Three monitoring wells (MW-1, MW-2 and MW-3) were installed at the Site. Upon completion of a borehole, a monitoring well was constructed within the augers as they were withdrawn from the borehole. Monitoring wells consisted of five-foot long lengths of 10-slot machine slotted stainless steel. Riser material consisted of flush-threaded stainless steel. Monitoring wells were completed with flush-mount protectors. Stratigraphic and Instrumentation Logs are presented in Appendix B.

3.1.6 Piezometer and Monitoring Well Development

Water levels were measured in each piezometer or well prior to development using a decontaminated electronic water level tape. The piezometers and wells were developed using an electronic submersible pump.

Measurements of pH, conductivity and temperature were made periodically during development and visual observations of turbidity and color were noted. Development continued until a minimum of 15 well volumes had been removed. Development water was discharged to the ground. Table 2 presents piezometer and monitoring well development parameters.

3.1.7 Monitoring Well Sampling and Analysis

Groundwater samples for VOC analysis were collected from the three newly installed monitoring wells and from four existing IEPA monitoring wells using disposable polyethylene bailers. The newly installed monitoring wells were sampled immediately after well development. The existing wells were sampled after a minimum of three well volumes of water had been purged from the wells and the parameters had stabilized. Table 3 presents monitoring well purging parameters.

A duplicate sample was collected from one of the wells for quality control/quality assurance (QA/QC). Samples were shipped on ice under chain of custody documentation to Accutest Laboratories of Dayton, New Jersey. Split samples were collected by the IEPA during the December 1996 sampling event. The results of IEPA sample analyses (performed by a separate laboratory) for monitoring wells G102S, G103s and G111 on the Ecolab property, and for G114 on Rockton Road were in agreement with those presented in this report.

3.1.8 Storage Garage Well Sampling

Water is supplied to the storage garage located east of the main Ecolab building by a production well. CRA sampled the well on November 21, 1996. Prior to sampling, the well was purged by running the water for 15 minutes. A sample and a duplicate sample were collected and analyzed for VOCs. Samples were shipped on ice under chain of custody documentation to NET, Inc. of Bartlett, Illinois for analysis.

3.1.9 Surveying

Willett, Hofmann and Associates, Inc. of Rockford, Illinois was contracted to provide surveying services. Vertical and horizontal controls for the newly installed piezometers and for five existing monitoring wells were established.

3.2 GROUNDWATER FLOW DATA

Based on groundwater elevations obtained on November 20, 1996, groundwater flow is to the southwest. Figure 4 presents groundwater contours and flow direction in the area of the Site. Figure 3 presents groundwater flow direction as related to the larger area.

The groundwater level data collected by CRA in November and December 1996 indicate a westerly component to groundwater flow in the upper sands and gravels near Ecolab. This westerly component is likely a result of the proximity of the Rock River to the west and the influence of a paleo-channel or bedrock valley located along the present surface water drainage of Dry Creek. The westerly component of groundwater flow is similar to that mapped by Wehrmann in his 1983 studies.

The net flux of groundwater beneath the Ecolab property is to the southwest. This groundwater flow is defined by a stream line which would be defined as a line from the center of the Ecolab building to the

intersection of Dry Creek and CR 8 (Hononegah Road). Groundwater stream lines originating on west, central and east portions of the Ecolab property are depicted on Figure 3. The east and west stream lines bracket the groundwater flowing under the Ecolab facility. These stream lines, if projected to the Evergreen Manor Site, pass to the west of the Tresemer Subdivision. Private wells in this Tresemer Subdivision area of the Evergreen Manor Site have not been impacted by VOCs. Figure 3 also presents the outline of the plume as defined by the IEPA in the 1992 Screening Site Inspection Report.

Some seasonal variation is expected in water levels and flow directions. Based upon groundwater monitoring data presented by Wehrmann in 1983 and 1984 and by the IEPA in 1994 and 1995 and based upon recent data collected by CRA, these flow variations are minimal in the area of the Ecolab facility.

3.3 GROUNDWATER OUALITY DATA

Table 4 presents a summary of groundwater quality data collected at monitoring wells located on the Ecolab property or on nearby properties. This table presents the results of recent groundwater sampling in December 1996 at IEPA monitoring wells G102s, 103s, 111, 114, and three new monitoring wells installed by CRA (MW-1, 2, 3) on the north side of the Ecolab property. Appendix C presents the chain-of-custody and certificates of analyses for the recent CRA samples. The only chlorinated VOCs detected in the eight monitoring wells were found in one well, G103s (1,1,1-TCA at 1.5 ppb and PCE at 8.4 ppb), located along the railroad tracks on the west side of Ecolab property. Figure 5 summarizes the sampling results for these eight monitoring wells (including the December 1996 data) and other nearby monitoring wells.

The information presented in Table 4 indicates that concentrations of PCE, 1,1,1-TCA and 1,1-DCA which had been observed in 1994 and 1995 in the IEPA monitoring wells have decreased to non-detect values with the exception of G103s. The lack of any higher concentrations of the VOCs suggests that any source activity or on-going release mechanism is

non-existent on the Ecolab facility. The detection of low concentrations of PCE and 1,1,1-TCA in G103s may be related to potential sources north of Rockton Road. Further, concentrations of PCE in G103s have decreased with time.

Consistent with past sample events, the new groundwater quality data from the December 1996 sampling event did not detect any concentrations of TCE on the Ecolab property. TCE and its degradation products have been detected in groundwater samples from monitoring wells located southwest of the AAA Disposal/WMI facility and, again, TCE is the predominant contaminant in the private wells at the Evergreen Manor Site.

3.4 SUMMARY OF RECENT INVESTIGATIONS

Groundwater level measurements made in late November 1996 and groundwater sampling completed in early December 1996 have determined the following:

- groundwater flow underneath and near the Ecolab property is to the southwest;
- groundwater stream lines which bracket the Ecolab property generally pass through the west northwest portion of the Evergreen Manor Site in areas which have not been contaminated by VOCs;
- sampling and analysis of groundwater from monitoring wells on the Ecolab property, including locations north and south of the manufacturing building, have not detected chlorinated solvents, with the exception of IEPA monitoring well G103s along the railroad tracks; and
- the low concentrations of PCE and 1,1,1-TCA detected in G103s in December 1996 are from a source upgradient of Ecolab.

4.0 CONCLUSIONS

CRA's review of existing FOIA file information, 104(e) responses, and Ecolab personnel interviews, along with the collection of groundwater level and quality data in November and December 1996, indicates that Ecolab has not contributed to the TCE and other VOC contamination of private wells located in the Evergreen Manor Site. Several factors support this conclusion.

First, groundwater sample analyses from private and monitoring wells in the Evergreen Manor Site area indicate a spatial distribution of VOCs that is not consistent with a source at the Ecolab property. The primary VOC found in the private wells is TCE, yet, TCE has not been detected on Ecolab property. TCE is the only VOC above MCLs and IEPA's 35 IAC 620 groundwater quality standards. Moreover, Ecolab has never used TCE. In addition, the center of the TCE plume in the Evergreen Manor subdivision does not align with groundwater originating on the Ecolab property (Figure 3) based on recently determined groundwater flow directions. Groundwater sampling results from monitoring wells located southwest of the AAA Disposal/WMI property indicate TCE and its degradation products at depths greater than 40 feet below grade. On the Ecolab property, however, low level groundwater impacts are shallow and do not include TCE.

Second, available records document the presence of potentially significant sources of TCE, PCE and 1,1,1-TCA upgradient and downgradient of Ecolab. Several of these facilities have documented the presence of chlorinated solvents in soils and subsurface soils on their property. FOIA file information, 104(e) responses and ERIIS Database Searches have indicated that Regal-Beloit, AAA Disposal/WMI, and Warner Electric are viable sources of TCE and 1,1,1-TCA detected in groundwater at the Evergreen Manor Site. In addition, the Makerite Manufacturing facility, Electro Cam, the former Beloit foundry landfill and Regal-Beloit, located north of Ecolab, could be contributing to groundwater contamination in the vicinity of Rockton Road and Highway 251.

Third, groundwater originating on the Ecolab property does not flow to the impacted private wells in Evergreen Manor. A westerly component of groundwater flow exists at and near the Ecolab property and this results in groundwater flow directions aligned with areas west of Evergreen Manor. According to the IEPA data reviewed to date, private wells in these westerly subdivisions have not been impacted by VOC contamination.

Finally, property use history and groundwater travel time further supports the conclusion that Ecolab has not contributed to VOC contamination at the Evergreen Manor Site. An average groundwater flow of over 800 feet per year would be required to move groundwater underneath the Ecolab facility in 1975 to 1978 to the Evergreen Manor Subdivision by 1990, and this velocity is inconsistent with regional and local hydrogeologic conditions. Because Ecolab did not start using 1,1,1-TCA and PCE solvents until sometime between 1975 to 1978, there can be no earlier source of release mechanism at the facility prior to these dates. Consequently, operations at Ecolab could not have contributed to the groundwater contamination discovered in 1990 in the Evergreen Manor Subdivision or nearby subdivisions.

5.0 REFERENCES

Clarke, R.P.; and Cobb, R. P., Winnebago County Groundwater Study, Illinois Environmental Protection Agency, P. A. 84-1108, November 1988.

Greetis, Timothy, <u>Preliminary Hydrogeologic Investigation of TCE</u>

<u>Contamination Near Roscoe</u>, <u>Winnebago County</u>, IEPA, August 1983

IEPA correspondence from Stan Black to Brian Tracy, Ecolab, Inc. of October 9, 1996 regarding groundwater quality data

Illinois Environmental Protection Agency Bureau of Land file for Evergreen Manor Subdivision. L2020400015

Illinois Environmental Protection Agency, <u>CERCLA Preliminary Assessment</u>
Report for Evergreen Manor ILD984836734, January 1992

Illinois Environmental Protection Agency, <u>CERCLA Screening Site Inspection</u>
Report, September 1992

Illinois Environmental Protection Agency (undated), <u>CERCLA Expanded Site</u> <u>Inspection Report, Evergreen Manor Groundwater Contamination</u>, TDD 984-836-734

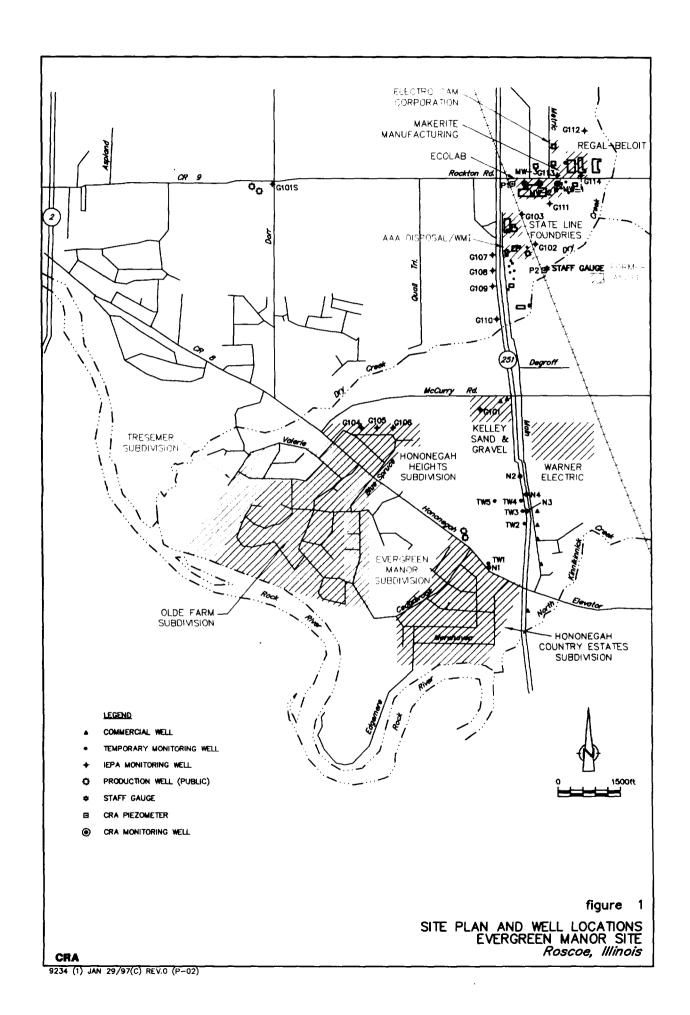
Lockheed Engineering and Sciences Company, <u>Soil-Gas Survey Report for the Evergreen Manor Subdivision</u>, Roscoe, Illinois - June, 1992, prepared for the U. S. EPA

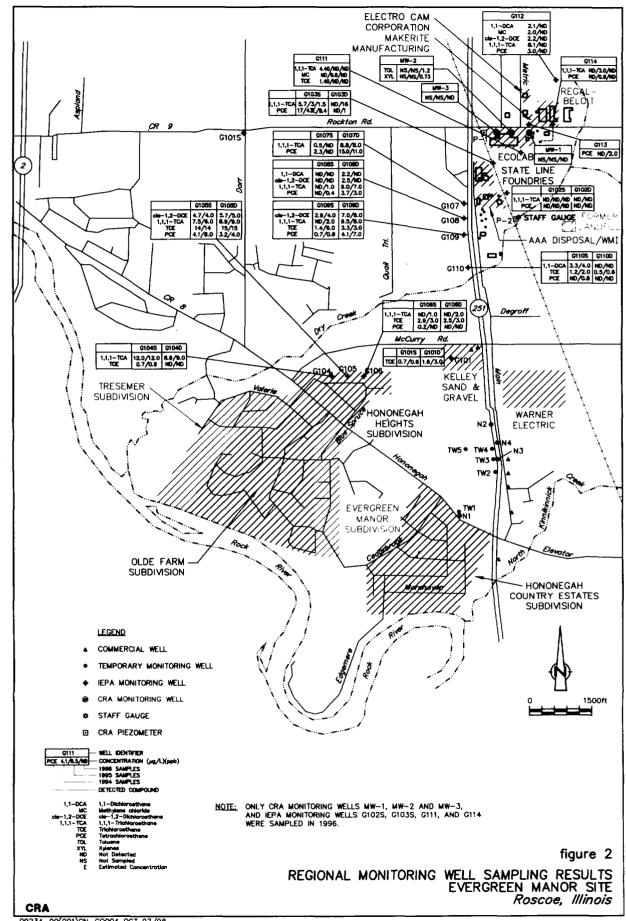
Lockheed Engineering and Sciences Company, <u>Soil Gas Survey Report for the Evergreen Manor Subdivision</u>, Roscoe, Illinois - August, 1992, prepared for the U. S. EPA

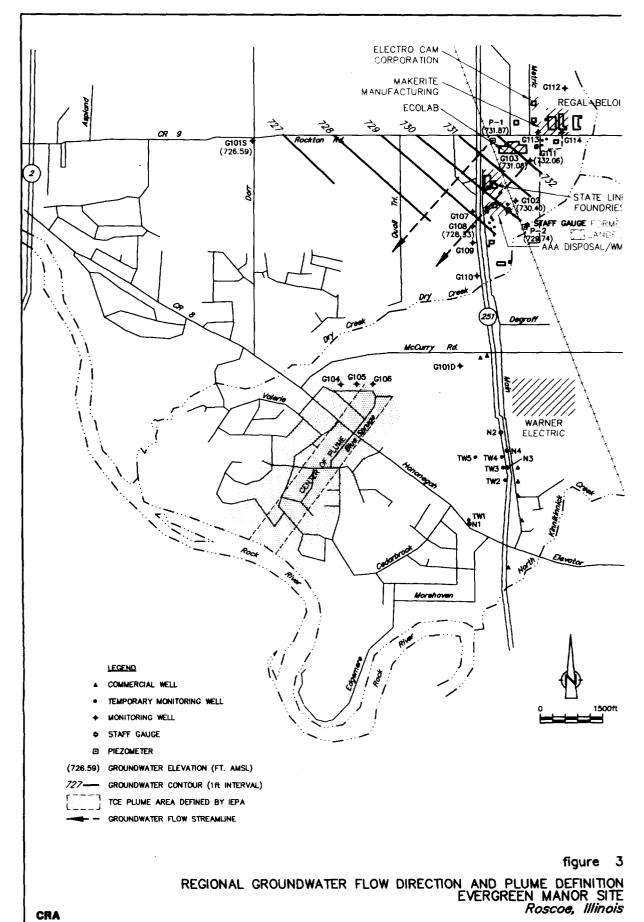
Riedel Environmental Services, Inc., <u>Evergreen Manor Monitoring Well Installation</u>, Roscoe, Illinois - February 1994, prepared for the IEPA

Wehrmann, H.A., <u>Potential Nitrate Concentration of Groundwater in the Roscoe Area, Winnebago County, Illinois</u>, Illinois State Water Survey, August 1983

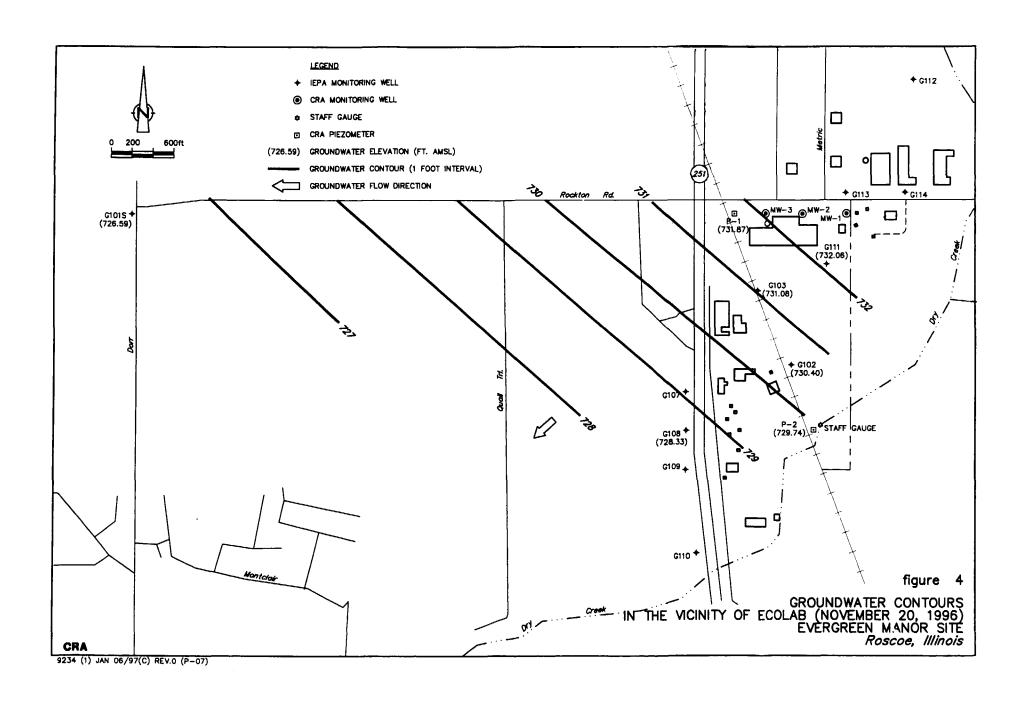
Wehrmann, H.A., <u>An Investigation of a Volatile Organic Chemical Plume in Northern Winnebago County, Illinois</u>, Illinois State Water Survey, August 1984


All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES


WOSEP !


Richard G. Shepherd, P. Eng.

Bruce C. Clegg


J. Philip Harvey

9234 (1) JAN 29/97(C) REV.0 (P-08)

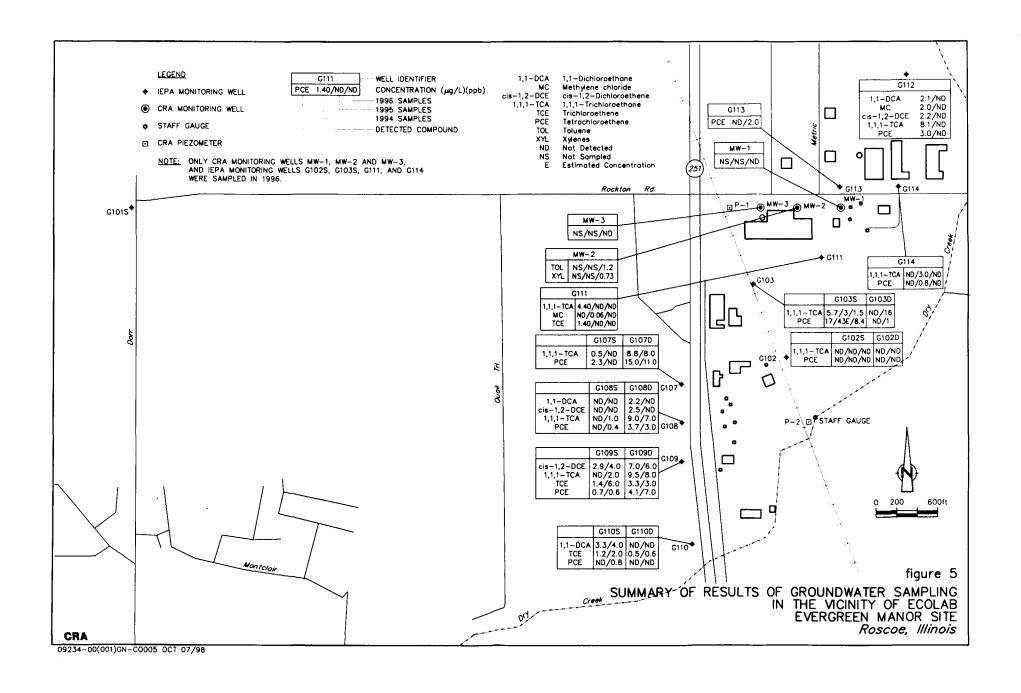


TABLE 1

SUMMARY OF GROUNDWATER ELEVATIONS NOVEMBER 20, 1996 EVERGREEN MANOR SITE ROSCOE, ILLINOIS

		11/20/96				
Well Number	Top of Casing Reference Elevation (ft AMSL) ¹	Depth to Water (ft BTOC) ²	Groundwater Elevation (ft AMSL)			
P-1	772.95	41.08	731.87			
P-2	749.81	20.07	729.74			
G102s	771.08	40.68	730.40			
G103s	767.16	36.08	731.08			
G108s	766.93	38.60	728.33			
G111	770.65	38.59	732.06			
FG101s	768.19	41.60	72 6.59			

¹ ft AMSL - feet above mean sea level

² ft BTOC - feet below top of casing

TABLE 2
SUMMARY OF PIEZOMETER AND MONITORING WELL DEVELOPMENT PARAMETERS
EVERGREEN MANOR SITE
ROSCOE, ILLINOIS

Piezometer/ Well Number	Date Conducted	Water Level (ft BTOC)	Well Volume (gallons)	Volume Removed (gallons)	pH (Standard Units)	Conductivity (µS/cm) ²	Temperature (°C)	Appearance	Development Met!10d
P-1	11/20/96	41.08	1.00	4	7.82	880	11.2	Brown, cloudy	Pump
1-1	11/20/00	11.00	1.00	8	7.68	<i>7</i> 98	8.7	Brown, cloudy	1
				12	7.58	859	8.5	Brown, cloudy	
				15	7.59	828	8.6	Very slightly cldy	
			•	20	7362	826	8.3	Brown, cloudy	
				24	7.63	855	9.2	Very slightly cldy	
P-2	11/19/96	20.05	1.06	4	7.44	758	9.0	Brown, cloudy	Pump
1 2	11, 17, 70			7	7.28	728	9.0	Brown, cloudy	-
				10	7.22	703	8.7	Brown, cloudy	
				15	7.21	716	8.6	Very slightly cldy	
				20	7.20	7 01	8.1	Brown, cloudy	
				24	7.24	706	8.2	Clear	
MW-1	12/3/96	37.45	0.93	1	7.42	594	8.8	Brown, cloudy	Pump
14144 1	12,0,00	07.20		3	7.56	559	9.0	Brown, cloudy	•
				5	7.49	572	9.3	Brown, cloudy	
				8	7.50	542	9.0	Brown, cloudy	
				10	7.54	561	9.1	Lt brn, slightly cldy	•
				12	7.53	562	9.1	Very slightly cldy	
				14	7.53	569	9.2	Clear	
				16	7.53	566	9.1	Clear	
MW-2	12/3/96	39.82	0.79	2	7.12	1,081	6.6	Brown, cloudy	Pump
2.2	, ,			4	7.18	1,103	6.7	Brown, cloudy	
				6	7.28	1,103	7.3	Brown, cloudy	
				8	7.26	1,096	8.0	Lt brn, slightly cldy	7
				10	7.27	1,101	8.2	Very slightly cldy	

TABLE 2 SUMMARY OF PIEZOMETER AND MONITORING WELL DEVELOPMENT PARAMETERS **EVERGREEN MANOR SITE** ROSCOE, ILLINOIS

Piezometer/ Well Number	Date Conducted	Water Level (ft BTOC)	Well Volume ¹ (gallons)	Volume Removed (gallons)	pH (Standard Units)	Conductivity (μS/cm) ²	Temperature (°C)	Appearance	Development Method
MW-2	12/3/96	39.82	0.79	12	7.27	1,091	8.2	Very slightly cldy	
				14	7.28	1,096	8.4	Clear	
				16	7.29	1,084	8.5	Clear	
MW-3	12/3/96	39.63	0.86	2	6.54	618	7.9	Brown, cloudy	Pump
				4	7.02	<i>77</i> 5	8.2	Brown, cloudy	•
				6	7.07	831	8.6	Brown, cloudy	
				8	7.18	836	8.7	Lt brn, slightly cldy	
				10	7.21	820	8.8	Lt brn, slightly cldy	
				12	7.22	811	8.9	Very slightly cldy	
				14	7.26	814	8.9	Clear	
				16	7.25	820	9.1	Clear	

 $^{^{1}\,}$ ft BTOC - feet below top of casing $^{2}\,$ µS/cm - microsiemens per centimeter

TABLE 3 SUMMARY OF MONITORING WELL PURGING PARAMETERS **EVERGREEN MANOR SITE** ROSCOE, ILLINOIS

Well Number	Date Conducted	Water Level (ft BTOC) 1	Well Volume (gallons)	Volume Removed (gallons)	pH (standard units)	Conductivity (µS/cm) ²	Temperature (°C)	Appearance	Purge Method
G102s	12/04/96	40.92	1.11	1.25 2.50 3.75	7.35 7.38 7.40	478 473 474	8.6 8.6 8.9	Very slightly cloudy Slightly cloudy Slightly cloudy	Bailed
G103s	12/04/96	36.33	1.44	1.5 3.0 4.5	7.14 7.15 7.17	615 628 630	9.8 9.8 10.0	Clear Clear Clear	Bailed
G111	12/04/96	38.83	1.93	2.0 4.0 6.0	7.24 7.27 7.31	465 477 482	11.2 11.3 11.3	Brown, cloudy Brown, cloudy Brown, cloudy	Bailed
G114	12/04/96	38.70	2.37	2.5 5.0 7.5 10.0	7.26 7.21 7.23 7.21	638 735 745 749	10.3 10.1 10.0 10.2	Brown, cloudy Brown, cloudy Lt brown, slightly cloudy Lt brown, slightly cloudy	Bailed

ft BTOC - feet below top of casing
 μS/cm - microsiemens per centimeter

TABLE 4

SUMMARY OF DETECTED ANALYTICAL DATA FOR ECOLAB AREA MONITORING WELLS EVERGREEN MANOR SITE ROSCOE, ILLINOIS

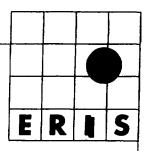
	1	
Concentration	Cuall \	L
Concentration	(UYILI	

	Concentration (µg/L)								
Well Location	G102s			G103s			G111		
Date Sampled	3/94	2/95	12/96	3/94	2/95	12/96	3/94	2/95	12/96
Analytes									
1,1-Dichloroethene	ND ²	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	0.60	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	ND	ND	ND	5. 7	3.0	1.5	4.4	ND	ND
Trichloroethene	ND	ND	ND	ND	ND	ND	1.4	ND	ND
Tetrachloroethene	ND	ND	ND	17.0	43.E ³	8.4	ND	ND	ND
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes	ND	ND	ND	ND	ND	ND	ND	ND	ND

TABLE 4

SUMMARY OF DETECTED ANALYTICAL DATA FOR ECOLAB AREA MONITORING WELLS EVERGREEN MANOR SITE ROSCOE, ILLINOIS

Concentration (µg/L)


	Concentration (µg/L)								
Well Location		G114		MW-1	MW-2	MW-3	Garage Well		
Date Sampled	3/94	2/95	12/96	12/96	12/96	12/96	11/96		
Analytes									
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND		
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND		
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND		
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND		
1,1,1-Trichloroethane	ND	3.0	ND	ND	ND	ND	ND		
Trichloroethene	ND	ND	ND	ND	ND	ND	ND		
Tetrachloroethene	ND	0.8	ND	ND	ND	ND	ND		
Toluene	ND	ND	ND	ND	1.20	ND	ND		
Xylenes	ND	ND	ND	ND	0.73	ND	ND		

 $^{^{1}}$ µg/L = micrograms per liter (parts per billion, ppb)

² ND - Not detected

³ E - Estimated quantity

APPENDIX A ERIIS DATABASE SEARCH

nt	ER'	P A		SB.	~ ·	$r \sim$	
	:n	ΙА	IIV	LN:	u	ıu	12

HIGHWAY 251 AND ROCKTON ROAD SOUTH BELOIT, IL 61080

REPORT NUMBER:

134112A

PREPARED ON:

12/19/1996

ON BEHALF OF:

Conestoga-Rovers & Associates 8615 W. Bryn Mawr Avenue Chicago, IL 60631

If you have any questions or comments regarding this report, please contact ERIIS Customer Service at 1-800-989-0403, locally at 703-834-0600, or fax us at 703-834-0606.

Thank you for your order.

Copyright (c) 1996 by Environmental Risk Information & Imaging Services (ERIIS).

All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means, electronic, mechanical, magnetic, optical, manual, or otherwise without prior written permission of ERIIS, 505 Huntmar Park Dr, Ste 200, Herndon, VA 22070.

ERIIS DISCLAIMER

The information contained in this report has been obtained from publicly available sources and other secondary sources of information produced by entities other than Environmental Risk Information & Imaging Services (ERIIS). Although great care has been taken by ERIIS in compiling and checking the information contained in this report to insure that it is current and accurate, ERIIS disclaims any and all liability for any errors, omissions, or inaccuracies in such information and data, whether attributable to inadvertence or otherwise, and for any consequences arising therefrom. The data provided hereunder neither purports to be nor constitutes legal or medical advice. It is further understood that ERIIS MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OF MERCHANTABILITY. NOR ANY SUCH REPRESENTATIONS OR WARRANTIES TO BE IMPLIED WITH RESPECT TO THE DATA FURNISHED, AND ERIIS ASSUMES NO RESPONSIBILITY WITH RESPECT TO CUSTOMER'S, ITS EMPLOYEES', CLIENTS', OR CUSTOMERS' USE THEREOF. ERIIS SHALL NOT BE LIABLE FOR ANY SPECIAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES RESULTING, IN WHOLE OR IN PART, FROM CUSTOMER'S USE OF THE DATA. Liability on the part of the Environmental Risk Information & Imaging Services (ERIIS) is limited to the monetary value paid for this report. The report is valid only for the geographical parameters specified on the cover page of this report, and any alteration or deviation from this description will require a new report. This report does not constitute a legal opinion.

ERIIS REPORT OVERVIEW

The following features are available for an ERIIS report:

- * Database Report
 - * Statistical Profile
 - * Database Records
- * Related Maps
 - * Digital Custom Plotted Map
 - * Sanborn Fire Insurance Map(s)
 - * Topographical Map(s)

Statistical Profile

The statistical profile is an at-a-glance numeric summary of the databases searched for your ERIIS Report.

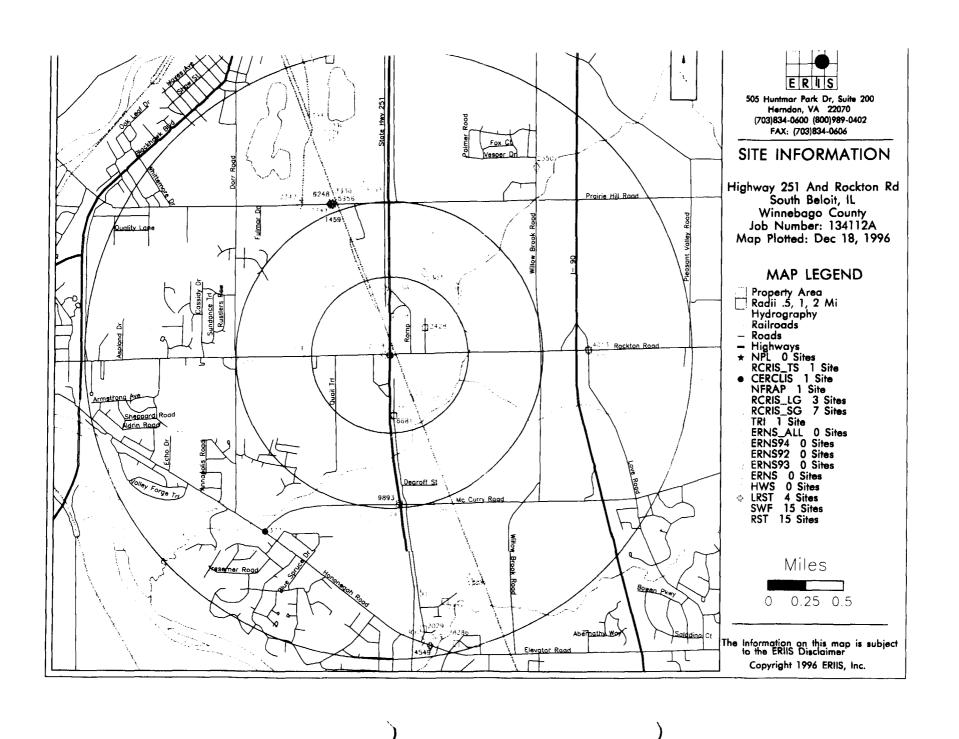
Database Records

The detailed federal and state database information indicates potential and actual environmental threats within the study radius. These records are sorted by their distance from the study site.

Digital Custom Map

The digital custom map is cross referenced with the database records. The cross-in-circle in the center of the map represents the study site. The red circles represent distances from the study site. The plottable sites in the report are distinguished on the map by symbols of different shape and color.

١


Historic Fire Insurance Maps

The ERIIS collection of historical Sanborn Fire Insurance Maps covers 14,000 cities and towns. These maps may indicate prior use of the study site. If no maps are available for the study site, a notice to that effect is included. This notice should serve as evidence of due diligence.

Topographical Map

USGS topographical maps show natural and man-made features as well as the shape and elevation of the terrain. The 7.5 minute quad maps are produced at a scale of 1:24,000, or one inch represents 2,000 feet.

If you have any questions about this report, please contact ERIIS Customer Service at 1-800-989-0403

D001 -- A solid waste that exhibits the characteristic of ignitability, but is not listed as a hazardous waste in Subpart D.

D002 -- A solid waste that exhibits the characteristic of corrosivity, but is not listed as a hazardous waste in Subpart D.

D003 -- A solid waste that exhibits the characteristic of reactivity, but is not listed as a hazardous waste in Subpart D.

EPA HW #	CAS #	COMMON CHEMICAL NAME
D004	7740-38-2	ARSENIC
D005	7740-39-3	BARIUM
D006	7440-43-9	CADMIUM
D007	7440-47-3	CHROMIUM
D008	7439-92-1	LEAD
D009	7439-97-6	MERCURY
D010	7782-49-2	SELENIUM
D011	7440-22-4	SILVER
D012	72-20-8	ENDRIN
D013	58-89-9	LINDANE
D014	72-43-5	METHOXYCHLOR
D015	8001-35-2	TOXAPHENE
D016	94-75-7	2,4-D
D017	93-72-1	2,4,5-TP(SILVEX)
D018	71-39-2	BENZENE
D019	56-23-5	CARBON TETRACHLORIDE
D020	57-74-9	CHLORDANE
D021	108-90-7	CHLOROBENZENE
D022	67-66-3	CHLOROFORM
D023	95-48-7	O-CRESOL
D024	108-39-4	M-CRESOL
D025	106-44-5	P-CRESOL
D026		CRESOL
D027	106-46-7	1,4-DICHLOROBENZENE
D028	107-06-2	1,2-DICHLOROETHANE
D029	75-35-4	1,1-DICHLOROETHYLENE
D030	121-14-2	2,4-DINITROTOLUENE
D031	76-44-8	HEPTACHLOR (AND ITS EPOXIDE)
D032	118-74-1	HEXACHLOROBENZENE
D033	87-68-3	HEXACHLOROBUTADIENE
D034	67-72-1	HEXACHLOROETHANE
D035	78-93-3	METHYL ETHYL KETONE
D036	98-95-3	NITROBENZENE
D037	87-86-5	PENTACHLOROPHENOL
D038	110-86-1	PYRIDINE
D039	127-18-4	TETRACHLOROETHYLENE
D040	79-01-6	TRICHLOROETHYLENE
D041	95-95-4	2,4,5-TRICHLOROPHENOL
D042	88-06-2	2,4,6-TRICHLOROPHENOL
D043	75-01-4	VINYL CHLORIDE

- F001 -- The following spent halogenated solvents used in degreasing: Tetrachloroethylene, trichloroethylene, methylene chloride, 1,1,1-trichloroethane, carbon tetrachloride, and chlorinated fluorocarbons; all spent solvent mixtures/blends used in degreasing containing, before use, a total of ten percent or more (by volume) of one or more of the above halogenated solvents or those solvents listed in F002, F004, and F005; and still bottoms from the recovery of these spent solvents and spent solvent mixtures.
- F002 -- The following spent halogenated solvents: Tetrachloroethylene, methylene chloride, trichloroethylene, 1,1,1-trichloroethane, chlorobenzene, 1,1,2-trichloroethane; all spent solvent mixtures/blends containing, before use, a total of ten percent or more (by volume) of one or more of the above halogenated solvents or those listed in F001, F004, and F005; and still bottoms from the recovery of these spent solvents and spent solvent mixtures.
- F003 -- The following spent non-halogenated solvents: Xylene, acetone, ethyl acetate, ethyl benzene, ethyl ether, methyl isobutyl ketone, n-butyl alcohol, cyclohexanone, and methanol; all spent solvent mixtures/blends containing, before use, only the above spent non-halogenated solvents; and all spent solvent mixtures/blends containing, before use, one or more of the above non-halogenated solvents, and, a total of ten percent or more (by volume) of one or more of those solvents listed in F001, F002, F004, and F005; and still bottoms from the recovery of these spent solvents and spent solvent mixtures.
- FO04 -- The following spent non-halogenated solvents: Cresols and cresylic acid, and nitrobenzene: all spent solvent mixtures/blends containing, before use, a total of ten percent or more (by volume) of one or more of the above non-halogentaed solvents or those solvents listed in FOO1, FOO2, and FOO5; and still bottoms from the recovery of these spent solvents and spent solvent mixtures.
- F005 -- The following spent non-halogenated solvents: Toluene, methyl ethyl ketone, carbon disulfide, isobutanol, pyridine, benzene, 2-ethoxyethanol, and 2-nitropropane; all spent solvent mixtures/blends containing, before use, a total of ten percent or more (by volume) of one or more of the above non-halogenated solvents or those solvents listed in F001, F002, or F004; and still bottoms from the recovery of these spent solvents and spent solvent mixtures.
- F006 -- Wastewater treatment sludges from electroplating operations except from the following processes: (1) Sulfuric acid anodizing of aluminum; (2) tin plating on carbon steel; (3) zinc plating (segregated basis) on carbon steel; (4) aluminum or zinc-aluminum plating on carbon steel; (5) cleaning/stripping associated with tin, zinc and aluminum plating on carbon steel; and (6) chemical etching and milling of aluminum.
- F007 -- Spent cyanide plating bath solutions from electroplating operations.
- F008 -- Plating bath residues from the bottom of plating baths from electroplating operations where cyanides are used in the process.

- F009 -- Spent stripping and cleaning bath solutions from electroplating operations where cyanides are used in the process.
- F010 -- Quenching bath residue from oil baths from metal heat treating operations where cyanides are used in the process.
- F011 -- Spent cyanide solutions from salt bath pot cleaning from metal heat treating operations.
- F012 -- Quenching wastewater treatment sludges from metal heat treating operations where cyanides are used in the process.
- F019 -- Wastewater treatment sludges from the chemical conversion coating of aluminum.
- F020 -- Wastes (except wastewater and spent carbon from hydrogen chloride purification) from the production or manufacturing use (as a reactant, chemical intermediate, or component in a formulating process) of tri- or tetrachlorophenol, or of intermediates used to produce their pesticide derivatives. (This listing does not include wastes from the production of hexachlorophene from highly purified 2,4,5-trichlorophenol.)
- FO21 -- Wastes (except wastewater and spent carbon from hydrogen chloride purification) from the production or manufacturing use (as a reactant, chemical intermediate, or component in a formulating process) of pentachlorophenol, or of intermediates used to produce its derivatives.
- F022 -- Wastes (except wastewater and spent carbon from hydrogen chloride purification) from the manufacturing use (as a reactant, chemical intermediate, or component in a formulating process) of tetra-, penta-, or hexachlorobenzenes under alkaline conditions.
- F023 -- Wastes (except wastewater and spent carbon from hydrogen chloride purification) from the production of materials on equipment previously used for the production or manufacturing use (as a reactant, chemical intermediate, or component in a formulating process) of tri- and tetrachlorophenols. (This listing does not include wastes from equipment used only for the production or use of hexachlorophene from highly purified 2,4,5- trichlorophenol.)
- FO24 -- Wastes, including but not limited to, distillation residues, heavy ends, tars, and reactor clean-out wastes from the production of chlorinated aliphatic hydrocarbons, having carbon content from one to five, utilizing free radical catalyzed processes. (This listing does not include light ends, spent filters and filter aids, spent dessicants, wastewater, wastewater treatment sludges, spend catalysts, and wastes listed in §261.32.)
- FO26 -- Wastes (except wastewater and spent carbon from hydrogen chloride purification) from the production of materials on equipment previously used for the manufacturing use (as a reactant, chemical intermediate, or component in a formulating process) of tetra-, penta-, or hexachlorobenzene under alkaline conditions.
- FO27 -- Discarded unused formulations containing tri-, tetra-, or pentachlorophenol or discarded unused formulations containing compounds derived from these chlorophenols. (This listing does not include formulations containing hexachlorophene synthesized from prepurified 2,4,5-trichlorophenol as the sole component.)

- F028 -- Residues resulting from the incineration or thermal treatment of soil contaminated with EPA Hazardous Waste Nos. F020, F021, F022, F023, F026, and F027.
- K001 -- Bottom sediment sludge from the treatment of wastewaters from wood preserving processes that use creosote and/or pentachlorophenol.
- K002 -- Wastewater treatment sludge from the production of chrome yellow and orange pigments.
- K003 -- Wastewater treatment sludge from the production of molybdate orange pigments.
- K004 -- Wastewater treatment sludge from the production of zinc yellow pigments.
- K005 -- Wastewater treatment sludge from the production of chrome green pigments.
- K006 -- Wastewater treatment sludge from the production of chrome oxide greenpigments (anhydrous and hydrated).
- K007 -- Wastewater treatment sludge from the production of iron blue pigments.
- K008 -- Oven residue from the production of chrome oxide green pigments.
- K009 -- Distillation bottoms from the production of acetaldehyde from ethylene.
- K010 -- Distillation side cuts from the production of acetaldehyde from ethylene.
- K011 -- Bottom stream from the wastewater stripper in the production of acrylonitrile.
- K013 -- Bottom stream from the acetonitrile column in the production of acrylonitrile.
- K014 -- Bottoms from the acetonitrile purification column in the production of acrylonitrile.
- K015 -- Still bottoms from the distillation of benzyl chloride.
- K016 -- Heavy ends or distillation residues from the production of carbon tetrachloride.
- KO17 -- Heavy ends (still bottoms) from the purification column in the production of epichlorohydrin.
- K018 -- Heavy ends from the fractionation column in ethyl chloride production.
- KO19 -- Heavy ends from the distillation of ethylene dichloride in ethylene dichloride production.
- K020 -- Heavy ends from the distillation of vinly chloride in vinly chloride monomer production.
- K021 -- Aqueous spend antimony catalyst waste from fluoromethane production.
- K022 -- Distillation bottom tars from the production of phenol/acetone from cumene.
- KO23 -- Distillation light ends from the production of phthalic anhydride from naphthalene.

- K024 -- Distillation bottoms from the production of phthalic anhydride from naphthalene.
- K025 -- Distillation bottoms from the production of nitrobenxene by the nitration of benzene.
- K026 -- Stripping still tails from the production of methyl ethyl pyridines.
- K027 -- Centrifuge and distillation residues from toluene diisocyanate production.
- K028 -- Spent catalyst from the hydrochlorinator reactor in the production of 1,1,1-trichloroethane.
- KO29 -- Wastes from the product steam stripper in the production of 1,1,1-trichloroethane.
- K030 -- Column bottoms or heavy ends from the combined production of trichloroethtlene and perchloroethtlene.
- K031 -- By-product salts generated in the production of MSMA and cacodylic acid.
- K032 -- Wastewater treatment sludge from the production of chlordane.
- K033 -- Wastewater and scrub water from the chlorination of cyclopentadiene in the production of chlordane.
- K034 -- Filter solids from the filtration of hexachlorocyclopentadiene in the prodution of chlordane.
- K035 -- Wastewater treatment sludges generated in the production of creosote.
- K036 -- Still bottoms from toluene reclamation distillation in the production of disulfoton.
- K037 -- Wastewater treatment sludges from the production of disulfoton,
- K038 -- Wastewater from the washing and stripping of phorate production.
- K039 -- Filter cake from the filtration of diethylphosphorodithioic acid in the productionof phorate.
- KO40 -- Wastewater treatment sludge from the production of phorate.
- KO41 -- Wastewater treatment sludge from the production of toxaphene.
- K071 -- Brine purification muds from the mercury cell process in chlorine production, where separately prepurified brine is not used.
- K073 -- Chlorinated hydrocarbon waste from the purification step of the diaphragm cell process using graphite anodes in chlorine production.
- K083 -- Distillation bottoms from aniline production.

EPA HAZARDOUS WASTE NUMBERS -- HAZARDOUS WASTE DESCRIPTION

- K085 -- Distillation or fractionation column bottoms from the production of chlorobenzenes.
- K093 -- Distillation light ends from the production of phthalic anhydride from ortho-xylene.
- K095 -- Distillation bottoms from the production of 1,1,1-trichloroethane.
- K096 -- Heavy ends from the heavy ends column from the production of 1,1,1-trichloroethane.
- K097 -- Vacuum stripper discharge from the chlordane chlorinator in the production of chlordane.
- K098 -- Untreated process wastewater from the production of toxaphene.
- K103 -- Process residues from aniline extraction from the production of aniline.
- K104 -- Combined wastewater streams generated from nitrobenzene/aniline production,
- K105 -- Separated aqueous stream from the reactor product washing step in the production of chlorobenzenes.
- K106 Wastewater treatment sludge from the mercury cell process in chlorine production.
- K111 Product washwaters from the production of dinitrotoluene via nitration of toluene.
- K112 -- Reaction by-product water from the drying column in the production of toluenediamine via hydrogenation of dinitrotoluene.
- K113 -- Condensed liquid light ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene.
- K114 -- Vicinals from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene.
- K115 -- Heavy ends from the purification of toluenediamine in the production of toluenediamine via hydrogenation of dinitrotoluene.
- K116 -- Organic condensate from the solvent recovery column in the production of toluene disocyanate via phospenation of toluenediamine.
- K117 -- Wastewater from the reactor vent gas scrubber in the production of ethylene dibromide via bromination of ethene.
- K118 -- Spent absorbent solids from purification of ethylene dibromide in the production of ethylene dibromide via bromination of ethene.
- K136 -- Still bottoms from the purification of ethylene dibromide in the production of ethylene dibromide via bromination of ethene.

EPA HW #	CAS #	COMMON CHEMICAL NAME
F027	88-06-2	2,4,6-TRICHLOROPHENOL
F027	58-90-2	2,3,4,6-TETRACHLOROPHENOL
F027	95-95-4	2,4,5-TRICHLOROPHENOL
F027	87-86-5	PENTACHLOROPHENOL
F027	93-76-5	2,4,5-TRICHLOROPHENOXYACETIC ACID
F027	93-72-1	SILVEX
P002	591-08-28	1-ACETYL-2-THIOUREA
P003	107-02-88	ACROLEIN
P001	81-81-2	WARFARIN
P004	309-00-28	ALDRIN
P005	107-18-68	ALLYL ALCOHOL
P006	20859-73-8	ALUMINUM PHOSPHIDE
P007	2763-96-4	MUSCIMOL
P008	504-24-58	PYRIDINE, 4-AMINO
P010	7778-39-4	ARSENIC ACID
P011	1303-28-2	ARSENIC PENTOXIDE, SOLID
P012	1327-53-3	ARSENIC TRIOXIDE, SOLID
P013	542-62-18	BARIUM CYANIDE, SOLID
P014	108-98-58	PHENYL MERCAPTAN
P015	7440-41-7	BERYLLIUM
P016	542-88-18	BIS(CHLOROMETHYL)ETHER
P017	598-31-28	BROMOACETONE
P018	357-57-38	BRUCINE
P020	88-85-7	DINOSEB
PO21	592-01-88	CALCIUM CYANIDE, SOLID
P022	75-15-0	CARBON DISULFIDE
P023	107-20-08	CHLOROACETALDEHYDE
P024	106-47-88	P-CHLOROANILINE
P026	5344-82-1	1-(0-CHLOROPHENYL) THIOUREA
P027	542-76-78	3-CHLOROPROPIONITRILE
P028	100-44-78	BENZYL CHLORIDE
P029	544-92-38	CUPROUS CYANIDE
P030	57-12-5	CYANIDES (SOLUBLE SALTS AND COMPLEXES)
P031	460-19-58	CYANOGEN
P033	506-77-48	CYANOGEN CHLORIDE, INHIBITED
P034	131-89-58	4,6-DINITRO-0-CYCLOHEXYLPHENOL
P036	696-28-68	DICHLOROPHENYLARSINE
P037	60-57-1	DIELDRIN
P038	692-42-28	DIETHYLARSINE
P039	298-04-48	DISULFOTON
P040	297-97-28	THIONAZIN
P041	311-45-58	DIETHYL P-NITROPHENYL PHOSPHATE
P042	51-43-4	EPINEPHRINE
P043	55-91-4	ISOFLUROPHATE
P044	60-51-5	DIMETHOATE
P045	39196-18-4	THIOFANOX
P046	122-09-88	ALPHA, ALPHA-DIMETHYLPHENETHYLAMINE
P047	534-52-18	DINITRO-ORTHO-CRESOL

EPA HW #	CAS#	COMMON CHEMICAL NAME
P048	51-28-5	2,4-DINITROPHENOL
P049	541-53-78	2,4-DITHIOBIURET
P050	115-29-78	ENDOSULFAN
P051	72-20-8	ENDRIN
P054	151-56-48	ETHYLENEIMINE
P056	7782-41-4	FLUORINE
P057	640-19-78	FLUORACETAMIDE
P058	62-74-8	SODIUM FLUOROACETATE
P059	76-44-8	HEPTACHLOR
P060	465-73-68	ISODRIN
P062	757-58-48	HEXAETHYL TETRAPHOSPHATE
P063	74-90-8	HYDROGEN CYANIDE, ANHYDROUS,
		STABILIZED
P064	624-83-98	METHYL ISOCYANATE
P065	628-86-48	MERCURY FULMINATE
P066	16752-77-5	METHOMYL
P067	75-55-8	PROPYLENE IMINE
P068	60-34-4	METHYL HYDRAZINE
P069	75-86-5	ACETONE CYANOHYDRIN
P071	298-00-08	METHYL PARATHION
P072	86-88-4	THIOUREA, 1-NAPHTHALENYL-(ANTU)
P073	13463-39-3	NICKEL CARBONYL
P074	557-19-78	NICKEL CYANIDE
P075	54-11-5	NICOTINE
P076	10102-43-9	NITRIC OXIDE
P077	100-01-68	P-NITROANILINE
P078	10102-44-0	NITROGEN DIOXIDE
P081	55-63-0	NITROGLYCERIN
P082	62-75-9	N-NITROSODIMETHYLAMINE
P084	4549-40-0	N-NITROSOMETHYLVINYLAMINE
P085	152-16-98	SCHRADAN
P087	20816-12-0	OSMIUM TETROXIDE
P088	145-73-38	ENDOTHAL
P089	56-38-2	PARATHION
P092	62-38-4	PHENYLMERCURIC ACETATE
P093	103-85-58	PHENYLTHIOUREA
P094	298-02-28	PHORATE
P095	75-44-5	PHOSGENE
P096	7803-51-2	PHOSPHINE
P097	52-85-7	FAMPHUR
P098	151-50-88	POTASSIUM CYANIDE
P099	506-61-68	POTASSIUM SILVER CYANIDE
P100	107-12-08	ETHYL CYANIDE
P101	107-12-08	PROPIONITRILE
P102	107-19-78	PROPARGYL ALCOHOL
P103	630-10-48	SELENOUREA
P104	506-64-98	SILVER CYANIDE
P105	26628-22-8	SODIUM AZIDE (NA(N3))

EPA HW #	CAS #	COMMON CHEMICAL NAME
P106	143-33-98	SODIUM CYANIDE (NA(CN))
P108	57-24-9	STRYCHNINE
P109	3689-24-5	SULFOTEP
P110	78-00-2	TETRAETHYL LEAD
P111	107-49-38	TETRAETHYL PYROPHOSPHATE
P112	509-14-88	TETRANITROMETHANE
P113	1314-32-5	THALLIC OXIDE
P114	12039-52-0	SELENIOUS ACID, DITHALLIUM(1 +) SALT
P115	7446-18-6	THALLOUS SULFATE
P116	79-19-6	THIOSEMICARBAZIDE
P119	7803-55-6	AMMONIUM METAVANADATE
P120	1314-62-1	VANADIUM PENTOXIDE
P121	557-21-18	ZINC CYANIDE
P122	1314-84-7	ZINC PHOSPHIDE
P123	8001-35-2	TOXAPHENE
U001	75-07-0	ACETALDEHYDE
U002	67-64-1	ACETONE
U003	75-05-8	ACETONITRILE
U004	98-86-2	ACETOPHENONE
U005	53-96-3	2-ACETYLAMINOFLUORENE
U00 6	75-36-5	ACETYL CHLORIDE
U007	79-06-1	ACRYLAMIDE
U008	79-10-7	ACRYLIC ACID
U009	107-13-18	ACRYLONITRILE, INHIBITED
U010	50-07-7	MITOMYCIN C
U011	61-82-5	AMITROLE
U012	62-53-3	ANILINE
U014	492-80-88	C.I. SOLVENT YELLOW 34
U015	115-02-68	AZASERINE
U016	225-51-48	BENZ[C]ACRIDINE
U017	98-87-3	BENZAL CHLORIDE
U018	56-55-3	BENZ(A)ANTHRACENE
U019	71-43-2	BENZENE
U020	98-09-9	BENZENESULFONYL CHLORIDE
U021	92-87-5	BENZIDINE
U022	50-32-8	BENZO(A)PYRENE
U023	98-07-7	BENZOIC TRICHLORIDE
U024	111-91-18	BIS(2-CHLOROETHOXY)METHANE
U025	111-44-48	2,2'-DICHLOROETHYL ETHER
U026	494-03-18	CHLORNAPHAZINE
U027	108-60-18	BIS(2-CHLOROISOPROPYL)ETHER
U028	117-81-78	DI-(2-ETHYLHEXYL)PHTHALATE
U029	74-83-9	METHYL BROMIDE
U030	101-55-38	4-BROMOPHENYL PHENYL ETHER
U031	71-36-3	N-BUTYL ALCOHOL
U032	13765-19-0	CALCIUM CHROMATE
U033	353-50-48	CARBONIC DIFLUORIDE
U034	75-87-6	ACETALDEHYDE, TRICHLORO-

EPA HW #	CAS #	COMMON CHEMICAL NAME
U035	305-03-38	CHLORAMBUCIL
U036	57-74-9	CHLORDANE
U037	108-90-78	CHLOROBENZENE
U038	510-15-68	CHLOROBENZILATE
U039	59-50-7	4-CHLORO-M-CRESOL
U041	106-89-88	EPICHLOROHYDRIN
U042	110-75-88	2-CHLOROETHYL VINYL ETHER
U043	75-01-4	VINYL CHLORIDE
U044	67-66-3	CHLOROFORM
U045	74-87-3	METHYL CHLORIDE
U046	107-30-28	CHLOROMETHYL METHYL ETHER
U047	91-58-7	BETA-CHLORONAPHTHALENE
U048	95-57-8	0-CHLOROPHENOL
U049	3165-93-3	4-CHLORO-O-TOLUIDINE HYDROCHLORIDE
U050	218-01-98	1,2-BENZPHENANTHRENE
U051	8021-39-4	WOOD CREOSOTE
U052	1319-77-3	CRESOL
U053	4170-30-3	CROTONALDEHYDE
U055	98-82-8	CUMENE
U056	110-82-78	CYCLOHEXANE
U057	108-94-18	CYCLOHEXANONE
U058	50-18-0	CYCLOPHOSPHAMIDE
U059	20830-81-3	DAUNOMYCIN
U060	72-54-8	1,1-DICHLORO-2,2-BIS
		(P-CHLOROPHENYL)ETHANE
U061	50-29-3	DICHLORODIPHENYLTRICHLOROETHANE
U062	2303-16-4	DIALLATE
U063	53-70-3	DIBENZ(A,H)ANTHRACENE
U064	189-55-98	DIBENZO(A,I)PYRENE
U066	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE
U067	106-93-48	ETHYLENE DIBROMIDE
U068	74-95-3	METHYLENE BROMIDE
U069	84-74-2	DIBUTYL PHTHALATE
U070	95-50-1	0-DICHLOROBENZENE, LIQUID
U071	541-73-18	M-DICHLOROBENZENE
U072	106-46-78	P-DICHLOROBENZENE
U073	91-94-1	3,3'-DICHLOROBENZIDINE
U074	764-41-08	1,4-DICHLORO-2-BUTENE (I,T)
U075	75-71-8	DICHLORODIFLUOROMETHANE
U076	75-34-3	1,1-DICHLOROETHANE
U077	107-06-28	ETHYLENE DICHLORIDE
U078	75-35-4	VINYLIDENE CHLORIDE
U079	156-60-58	TRANS-1,2-DICHLOROETHYLENE
U080	75-09-2	DICHLOROMETHANE
U081	120-83-28	2,4-DICHLOROPHENOL
U082	87-65-0	2,6-DICHLOROPHENOL
U083	78-87-5 542-75-69	PROPYLENE DICHLORIDE
U084	542-75-68	1,3-DICHLOROPHENOL

EPA HW #	CAS #	COMMON CHEMICAL NAME
U085	1464-53-5	2,2-BIOXIRANE
U086	1615-80-1	1,2-DIETHYLHYDRAZINE
U087	3288-58-2	0,0-DIETHYL S-METHYL DITHIOPHOSPHATE
U088	84-66-2	DIETHYL PHTHALATE
U089	56-53-1	DIETHYLSTILBESTROL
U090	94-58-6	DIHYDROSAFROLE
U091	119-90-48	3,3'-DIMETHOXYBENZIDINE
U092	124-40-38	DIMETHYLAMINE, ANHYDROUS
U093	60-11-7	4-DIMETHYLAMINOAZOBENZENE
U094	57-97-6	7,12-DIMETHYLBENZ(A)ANTHRACENE
U095	119-93-78	3,3'-DIMETHYLBENZIDINE
U096	80-15-9	CUMENE HYDROPEROXIDE
U097	79-44-7	DIMETHYLCARBAMOYL CHLORIDE
U099	540-73-88	1,2-DIMETHYLHYDRAZINE
U101	105-67-98	2,4-XYLENOL
U102	131-11-38	DIMETHYL PHTHALATE
U103	77-78-1	DIMETHYL SULFATE
U105	121-14-28	2,4-DINITROTOLUENE
U106	606-20-28	2,6-DINITROTOLUENE
U107	117-84-08	DIOCTYL PHTHALATE
U108	123-91-18	1,4-DIOXANE
U109	122-66-78	1,2-DIPHENYLHYDRAZINE
U110	142-84-78	DIPROPYLAMINE
U111	621-64-78	N-NITROSODI-N-PROPYLAMINE
U112	141-78-68	ETHYL ACETATE
U113	140-88-58	ETHYL ACRYLATE
U114	111-54-68	ETHYLENEBIS(DITHIOCARBAMIC ACID)
U115	75-21-8	ETHYLENE OXIDE
U116	96-45-7	ETHYLENE THIOUREA
U117	60-29-7	ETHYL ETHER
U118	97-63-2	ETHYL METHACRYLATE
U119	62-50-0	ETHYL METHANESULFONATE
U120	206-44-08	FLUORANTHENE
U121	75-69-4	FLUOROTRICHLOROMETHANE
U122	50-00-0	FORMALDEHYDE GAS
U123	64-18-6	FORMIC ACID
U124	110-00-98	FURAN
U125	98-01-1	FURFURAL
U126	765-34-48	GLYCIDALDEHYDE
U127	118-74-18	HEXACHLOROBENZENE
U128	87-68-3	HEXACHLOROBUTADIENE
U129	58-89-9	LINDANE
U130	77-47-4	HEXACHLOROCYCLOPENTADIENE
U131	67-72-1	HEXACHLOROETHANE
U132	70-30-4	HEXACHLOROPHENE
U133	302-01-28	HYDRAZINE, ANHYDROUS

EPA HW #	CAS #	COMMON CHEMICAL NAME
U134	7664-39-3	HYDROGEN FLUORIDE SOLUTION
U134	7664-39-3	HYDROGEN FLUORIDE
U135	7783-06-4	HYDROGEN SULFIDE
U136	75-60-5	CACODYLIC ACID
U137	193-39-58	INDENO(1,2,3-CD)PYRENE
U138	74-88-4	METHYL IODIDE
U139	9004-66-4	IRON DEXTRAN COMPLEX
U140	78-83-1	ISOBUTYL ALCOHOL
U141	120-58-18	ISOSAFROLE
U142	143-50-08	CHLORDECONE
U143	303-34-48	LASIOCARPINE
U144	301-04-28	LEAD ACETATE
U145	7446-27-7	LEAD PHOSPHATE
U146	1335-32-6	LEAD SUBACETATE
U147	108-31-68	MALEIC ANHYDRIDE
U148	123-33-18	MALEIC ANN TORIDE MALEIC HYDRAZIDE
U149	109-77-38	MALONONITRILE
U150	148-82-38	
U151		MELPHALAN
U152	7439-97-6 126-98-78	MERCURY
U153	74-93-1	METHACRYLONITRILE METHYL MERCAPTAN
U154		METHYL MERCAPTAN METHYL ALCOHOL
	67-56-1	
U155	91-80-5	METHAPYRILENE
U156	79-22-1	METHYL CHLOROFORMATE
U157	56-49-5	3-METHYLCHOLANTHRENE
U158	101-14-48	4,4'-METHYLENEBIS(2-CHLOROBENZENAMINE)
U159	78-93-3	METHYL ETHYL KETONE
U160	1338-23-4	2-BUTANONE PEROXIDE
U161	108-10-18	METHYL ISOBUTYL KETONE
U162	80-62-6	METHYL METHACRYLATE, INHIBITED
U163	70-25-7	N-METHYL-N'-NITRO-N-NITROSOGUANIDINE
U164	56-04-2	METHYLTHIOURACIL
U165 U166	91-20-3	NAPHTHALENE
	130-15-48	1,4-NAPHTHOQUINONE
U167	134-32-78	ALPHA-NAPHTHYLAMINE
U168 U169	91-59-8 98-95-3	BETA-NAPHTHYLAMINE
U170		NITROBENZENE, LIQUID
U171	100-02-78	P-NITROPHENOL 2-NITROPROPANE
U172	79-46-9 924-16-38	N-NITROSODI-N-BUTYLAMINE
U173	1116-54-7	N-NITROSODIETHANOLAMINE
U174		
U176	55-18-5 759-73-98	ETHANAMINE,N-ETHYL-N-NITROSQ-
U177		N-NITROSO-N-ETHYLUREA
	684-93-58	N-NITROSO-N-METHYLUREA
U178	615-53-28 100-75-48	N-NITRO-N-METHYLURETHANE
U179		N-NITROSOPIPERIDINE
U180	930-55-28	N-NITROSOPYRROLIDINE
U181	99-55-8	5-NITRO-O-TOLUIDINE

EPA HW #	CAS #	COMMON CHEMICAL NAME
U182	123-63-78	PARALDEHYDE
U183	608-93-58	PENTACHLOROBENZENE
U184	76-01-7	PENTACHLOROETHANE
U185	82-68-8	PENTACHLORONITROBENZENE
U186	504-60-98	1,3-PENTADIENE
U187	62-44-2	PHENACETIN
U188	108-95-28	PHENOL
U189	1314-80-3	PHOSPHOROUS PENTASULFIDE
U190	85-44-9	PHTHALIC ANHYDRIDE
U191	109-06-88	2-PICOLINE
U192	23950-58-5	PRONAMIDE
U193	1120-71-4	PROPANE SULTONE
U194	107-10-88	PROPYLAMINE
U196	110-86-18	PYRIDINE
U197	106-51-48	QUINONE
U200	50-55-5	RESERPINE
U201	108-46-38	RESORCINOL
U202	81-07-2	SACCHARIN
U203	94-59-7	SAFROLE
U204	7783-00-8	SELENIOUS ACID
U205	7488-56-4	SELENIUM DISULFIDE
U206	18883-66-4	STREPTOZOTOCIN
U207	95-94-3	1,2,4,5-TETRACHLOROBENZENE
U208	630-20-68	1,1,1,2-TETRACHLOROETHANE
U209	79-34-5	1,1,2,2-TETRACHLOROETHANE
U210	127-18-48	TETRACHLOROETHYLENE
U211	56-23-5	CARBON TETRACHLORIDE
U212	58-90-2	2,3,4,6-TETRACHLOROPHENOL
U213	109-99-98	TETRAHYDROFURAN
U214	563-68-88	THALLIUM ACETATE
U215	6533-73-9	THALLOUS CARBONATE
U216	7791-12-0	THALLIUM CHLORIDE
U217	10102-45-1	THALLIUM NITRATE
U218	62-55-5	THIOACETAMIDE
U219	62-56-6	THIOUREA
U220	108-88-38	TOLUENE
U221	25376-45-8	TOLUENEDIAMINE
U222	636-21-58	O-TOLUIDINE HYDROCHLORIDE
U223	26471-62-5	TOLUENE DIISOCYANATE (MIXED ISOMERS)
U225	75-25-2	BROMOFORM
U226	71-55-6	METHYL CHLOROFORM
U227	79-00-5	1,1,2-TRICHLOROETHANE
U228	79-01-6	TRICHLOROETHYLENE
U230	88-06-2	2,4,6-TRICHLOROPHENOL
U232	93-76-5	2,4,5-T ACID
U233	93-72-1	SILVEX (2,4,5-TP)
U234	99-35-4	1,3,5-TRINITROBENZENE
	•	

EPA HW #	CAS #	COMMON CHEMICAL NAME
U235	126-72-78	TRIS
U236	72-57-1	TRYPAN BLUE
U237	66-75-1	URACIL MUSTARD
U238	51-79-6	URETHANE
U239	95-47-6	O-XYLENE
U239	106-42-38	P-XYLENE
U239	108-38-38	M-XYLENE
U239	1330-20-7	XYLENE (MIXED ISOMERS)
U239	95-47-6	BENZENE, O-DIMETHYL-
U239	106-42-38	BENZENE, P-DIMETHYL-
U239	108-38-38	BENZENE, M-DIMETHYL-
U240	94-75-7	2,4-DICHLOROPHENOXYACETIC ACID
U242	87-86-5	PENTACHLOROPHENOL
U243	1888-71-7	HEXACHLOROPROPENE
U244	137-26-88	THIRAM
U246	506-68-38	CYANOGEN BROMIDE
U247	72-43-5	METHOXYCHLOR
U248	506-68-38	CYANOGEN BROMIDE
U249	1314-84-7	ZINC PHOSPHIDE (CONC. < = 10%)
U328	95-53-4	O-YOLUIDINE
U353	106-49-08	P-TOLUIDINE
U359	110-80-58	2-ETHOXYETHANOL

ENVIRONMENTAL RISK INFORMATION & IMAGING SERVICES AERIAL PHOTOGRAPH SEARCH REPORT

The following sources have reported aerial photo coverage for the subject site USGS topoquad. For site-specific photo availability and ordering, please call the individual source agency or call AIC at 1-800-945-9509 or fax this page to AIC at 512-478-5215.

FRIIS	Report	#1341	1 2 A

Dec 18, 1996

ERIIS Report #13411	2A							Page 1
VENDOR NAME		STR	EET		STATE	ZIP	PHONE	
AGRICULTURAL STA	BILIZATION AND CONSERVATION SERVICE	AER	AIL PHOTOGRAPHY	FIELD OFFICE P O BOX 30010) UT	84130-0	0010 (801) 97	5-3503
DATE OF		PROJECT				CLOUD	QUADRANGLE	
COVERAGE	SENSOR CLASS	CODE	SCALE	FOCAL LENGTH	FILM TYPE	COVER	COVERAGE	REMARKS
1951 JUL 24	VERTICAL CARTO (IMPLIES STEREO)	BXL	20000	8.25in OR 210mm	B&W	0%	100%	01
1958 MAY 01	VERTICAL CARTO (IMPLIES STEREO)	BXL	20000 20000	8.25in OR 210mm 8.25in OR 210mm	B&W	0%	100%	01
1964 MAY 21 1970 JUL 05	VERTICAL CARTO (IMPLIES STEREO) VERTICAL CARTO (IMPLIES STEREO)	BXL BXL	20000	8.25in OR 210mm 8.25in OR 210mm	B&W B&W	0% 0%	100%	04
1979 SEP 26	VERTICAL CARTO (IMPLIES STEREO)	DAL	40000	6.00in OR 152mm	B&W	0%	100% 100%	04 04
1981 MAY	VERTICAL CARTO (IMPLIES STEREO)	NHAP	58000	8.25in OR 210mm	COLOR	0%	100%	HIGH ALT PRGM
SOIL CONSERVATION	SERVICE AERIAL PHOTOGRPAHY FIELD OFFICE	PO	BOX 30010		UT	84130-0	0010 (801) 97	5-3503
DATE OF		PROJECT				CLOUD	QUADRANGLE	
COVERAGE	SENSOR CLASS	CODE	SCALE	FOCAL LENGTH	FILM TYPE	COVER	COVERAGE	REMARKS
1970 MAY	VERTICAL CARTO (IMPLIES STEREO)	BXL	38000	6.00in OR 152mm	B&W	0%	100%	NEMARKS
U S ARMY DEPT OF	THE ARMY EDC						(800) US	A-MAPS
DATE OF		PROJECT				CLOUD	QUADRANGLE	
COVERAGE	SENSOR CLASS	CODE 001	SCALE	FOCAL LENGTH	FILM TYPE	COVER	COVERAGE	REMARKS
1958 AUG 03	VERTICAL CARTO (IMPLIES STEREO)	001	66000	UNKOWN	B&W	0%	100%	1 610940330
U S GEOLOGICAL SU	RVEY RESTON ESIC	507	NATIONAL CENTER	R	VA	22092	(703) 64	8-5920
DATE OF		PROJECT				CLOUD	QUADRANGLE	
COVERAGE	SENSOR CLASS	CODE	<u>SCALE</u>	FOCAL LENGTH	FILM TYPE	COVER	COVERAGE	REMARKS
1956 APR 18	VERTICAL CARTO (IMPLIES STEREO)	VMU	17104	OTHER	B&W	0%	100%	
1970 NOV 07	VERTICAL CARTO (IMPLIES STEREO)	vcos	20013	OTHER	B&W	0%	100%	
1946 OCT 20	VERTICAL CARTO (IMPLIES STEREO)	СВ	27199	OTHER	B&W	0%	100%	
1976 APR 06	VERTICAL CARTO (IMPLIES STEREO)	VEDB	38000 58000	OTHER OTHER	B&W COLOR	0% 0%	100%	
1981 MAY 01 1981 MAY 01	VERTICAL CARTO (IMPLIES STEREO) VERTICAL CARTO (IMPLIES STEREO)	N4288 N4288	80000	OTHER	B&W	0%	100% 100%	
1988 JUN 01	VERTICAL CARTO (IMPLIES STEREO)	N4288	58000	OTHER	COLOR	0%	100%	
1988 JUN 01	VERTICAL CARTO (IMPLIES STEREO)	N4288	80000	OTHER	B&W	0%	100%	
1988	VERTICAL CARTO (IMPLIES STEREO)	NP8827	0040000	6.00in OR 152mm	COLOR	0%	100%	NAPP-LEAF OFF
NATIONAL ARCHIVES	S & RECORDS ADMIN CARTOGRAPHIC & ARCHIT	ECTURAL BR 860	1 ADELPHI RD		MD	20740-6	3001 (301) 71	3-7040
DATE OF		PROJECT			~~	CLOUD	QUADRANGLE	
COVERAGE	SENSOR CLASS	CODE BXL	<u>SCALE</u> 20000	FOCAL LENGTH 8.25in OR 210mm	FILM TYPE B&W	COVER 0%	COVERAGE	REMARKS
1939	VERTICAL CARTO (IMPLIES STEREO)				DQI VV	U70	100%	ASCS PROJECT
NATIONAL AERONAL	JTICS AND SPACE ADMINISTRATION, JS	НОГ	INSON SPACE CEN	TER			(800) US	A-MPAS
DATE OF		PROJECT				CLOUD	QUADRANGLE	
COVERAGE	SENSOR CLASS	<u>CODE</u> 1710	SCALE	FOCAL LENGTH	FILM TYPE	COVER	COVERAGE	REMARKS
1971 APR 24	VERTICAL RECONNAISSANCE		96385	6.00in OR 152mm	B&W	0%	100%	617100100 4790 4
1971 APR 24	VERTICAL RECONNAISSANCE	1710	97831	6.00in OR 152mm 6.00in OR 152mm	B&W B&W	0%	80%	617100100 4784 4
1971 APR 24	VERTICAL RECONNAISSANCE	1710	100267 120056	6.00in OR 152mm	COLOR	0% 0%	100%	617100100 4668 4
1971 MAY 13	VERTICAL RECONNAISSANCE	1660	120000	U.OURI OR 1941INII	COLOR	U70	100%	616600020 7843 7

ENVIRONMENTAL RISK INFORMATION & IMAGING SERVICES AERIAL PHOTOGRAPH SEARCH REPORT

The following sources have reported serial photo coverage for the subject site USGS topoquad. For site-specific photo availability and ordering, please call the individual source agency or call AIC at 1-800-945-9509 or fax this page to AIC at 512-478-5215.

ERIIS Report #134112A

Dec 18, 1996

ERIIS Report #134112	2A							Page 2
VENDOR NAME		STRE	ET		STATE	ZIP	PHONE	
DATE OF		PROJECT				CLOUD	QUADRANGLE	
COVERAGE	SENSOR CLASS		SCALE	FOCAL LENGTH	FILM TYPE	COVER	COVERAGE	REMARKS
1971 MAY 13	VERTICAL RECONNAISSANCE	<u>CODE</u> 1660	121682	6.00in OR 152mm	COLOR	0%	20%	616600020 7834 7
1971 JUN 26	VERTICAL RECONNAISSANCE	1730	117600	6.00in OR 152mm	COLOR	0%	100%	617300070 6805 6
1971 JUN 29	VERTICAL RECONNAISSANCE	1740	120369	6.00in OR 152mm	COLOR	0%	100%	617400020 7185 7
1971 JUL 13	VERTICAL RECONNAISSANCE	1750	117835	6.00in OR 152mm	COLOR	10%	100%	617500020 8583 8
1971 AUG 11	VERTICAL RECONNAISSANCE	1770	120704	6.00in OR 152mm	COLOR	10%	100%	617700150 0608 0
1971 AUG 11	VERTICAL RECONNAISSANCE	1770	123769	6.00in OR 152mm	COLOR	10%	100%	617700150 0606 0
1971 AUG 17	VERTICAL RECONNAISSANCE	1770	118466	6.00in OR 152mm	COLOR	80%	30%	617700120 0406 0
1971 AUG 17	VERTICAL RECONNAISSANCE	1770	119188	6.00in OR 152mm	COLOR	50%	100%	617700120 0411 0
1971 AUG 17	VERTICAL RECONNAISSANCE	1770	121594	6.00in OR 152mm	COLOR	90%	30%	617700120 0413 0
1971 AUG 25	VERTICAL RECONNAISSANCE	1780	121639	6.00in OR 152mm	COLOR	0%	100%	617800060 8585 8
1971 AUG 25	VERTICAL RECONNAISSANCE	1780	122197	6.00in OR 152mm	COLOR	0%	80%	617800060 8601 8
1971 SEP 21	VERTICAL RECONNAISSANCE	1800	117065	1.97in OR 50mm	COLOR	20%	100%	618000030 0127 0
1972 JUN 04	VERTICAL RECONNAISSANCE	2050	64184	12.00in OR	COLOR	0%	80%	620500220 0348 0
1972 JUN 04	VERTICAL RECONNAISSANCE	2050	64209	12.00in OR	COLOR	0%	80%	620500220 0362 0
1972 JUN 04	VERTICAL RECONNAISSANCE	2050	120603	6.00in OR 152mm	COLOR	10%	100%	620500200 0189 0
1972 JUN 04	VERTICAL RECONNAISSANCE	2050	120932	6.00in OR 152mm	COLOR	0%	100%	620500200 0174 0
1972 JUN 04	VERTICAL RECONNAISSANCE	2050	122176	6.00in OR 152mm	COLOR	0%	100%	620500210 0181 0
1974 JUL 31	VERTICAL RECONNAISSANCE	27 9 0	120000	6.00in OR 152mm	COLOR	0%	70%	627900100 0115 0
WHITTIER COLLEGE D	DEPT OF GEOLOGY	1340	6 EAST PHILADEI	PHIA ST	CA	90608	(310) 90	7-4220
5.77.05		PROJECT				CLOUD	QUADRANGLE	
DATE OF	SENSOR CLASS		SCALE	FOCAL LENGTH	FILM TYPE	COVER		REMARKS
COVERAGE 1956	UNKNOWN	<u>CODE</u> 22508	<u>SCALE</u> 4800	UNKOWN	B&W	ÜNK	COVERAGE 50%	FAIRCHILD DATA
	UNKNOWN	22650	12000	UNKOWN	B&W	UNK	100%	FAIRCHILD DATA
1956	UNKNOWN		. — -					
SIDWELL CO		28 V	VEST 240 NORTH	ST	IL	60185	(708) 23	1-8200
DATE OF		PROJECT				CLOUD	QUADRANGLE	
COVERAGE	SENSOR CLASS	CODE	SCALE 10800	FOCAL LENGTH	FILM TYPE	COVER	COVERAGE	REMARKS
1978 MAR	VERTICAL CARTO (IMPLIES STEREO)	CODE CODE	10800	3.46in OR 88mm	B&W	0%	100%	
1978 MAR	VERTICAL CARTO (IMPLIES STEREO)	00	24000	6.00In OR 152mm	B&W	0%	100%	
MARKHURD CORP		1340	O 68TH AVE		MN	55368	(612) 42	0-9606
DATE OF		PROJECT				CLOUD	QUADRANGLE	
DATE OF	0511502 01 405		SCALE	FOCAL LENGTH	FII M TYPE		COVERAGE	REMARKS
COVERAGE	SENSOR CLASS	CODE	<u>SCALE</u> 40000	6.00in OR 152mm	FILM TYPE B&W	COVER 0%	100%	WINNEBAGO 1/4QD
1988 APR	VERTICAL CARTO (IMPLIES STEREO)	IL.	40000	0.0001 011 10211111	Davi	U / U	100 /6	WINNEBAGO 1/4QD
WISCONSIN DEPT OF	F TRANSPORTATION	480	SHEBOYGAN AV	/E RM 5B	WI	53707	(608) 26	6-0309
DATE OF		PROJECT				CLOUD	QUADRANGLE	
DATE OF	CENCOD CLACS		SCALE	FOCAL LENGTH	FILM TYPE	COVER	COVERAGE	REMARKS
COVERAGE	SENSOR CLASS VERTICAL CARTO (IMPLIES STEREO)	CODE	<u>SCALE</u> 0003000	6.00in OR 152mm	B&W IR	0%	20%	TOWNSHIP CENTERD
1938			0072000	6.00in OR 152mm	B&W	0%	20%	TOWNSHIP CENTERD
1968	VERTICAL CARTO (IMPLIES STEREO)		0072000	6.00in OR 152mm	B&W	0%	20%	TOWNSHIP CENTERD
1992	VERTICAL CARTO (IMPLIES STEREO)	75-3	9600	6.00in OR 152mm	B&W	0%	30%	ROCK COUNTY WI
1975 NOV 15	VERTICAL CARTO (IMPLIES STEREO)	15-3	3000	5.00m On 152mm	D#11	U N	30 R	HOCK COOKIT WI

ENVIRONMENTAL RISK INFORMATION & IMAGING SERVICES DATABASE REFERENCE GUIDE

NPL Date of Data: 05/01/1996 Release Date: 05/13/1996 Date on System: 07/26/1996
US Environmental Protection Agency
Office of Solid Waste and Emergency Response
703/603-8881

RCRIS TS
Date of Data: 05/10/1996
Release Date: 06/10/1996
Date on System: 07/19/1996
US Environmental Protection Agency
Office of Solid Waste and Emergency Response
202/260-4610

CERCLIS
Date of Data: 05/01/1996
Release Date: 05/13/1996
Date on System: 07/19/1996
I vironmental Protection Agency
of Solid Waste and Emergency Response
1603-8730

NFRAP
Date of Data: 05/01/1996
Release Date: 05/13/1996
Date on System: 08/02/1996
US Environmental Protection Agency
Office of Solid Waste and Emergency Response
703/603-8881

RCRIS LG
Date of Data: 05/10/1996
Release Date: 06/10/1996
Date on System: 07/19/1996
US Environmental Protection Agency
Cff e of Solid Waste and Emergency Response
160-4610

RCRIS SG
Date of Date: 05/10/1996
Release Date: 06/10/1996
Date on System: 07/19/1996
US Environmental Protection Agency
Office of Solid Waste and Emergency Response
202/260-4610

National Priorities List

The NPL Report, also known as the Superfund List, is an EPA listing of uncontrolled or abandoned hazardous waste sites. The list is primarily based upon a score which the site receives from the EPA's Hazardous Ranking System. These sites are targeted for possible long-term remedial action under the Superfund Act of 1980.

Resource Conservation and Recovery Information System - Treatment, Storage, And Disposal Facilities

The RCRIS TS Report contains information pertaining to facilities which either treat, store, or dispose of EPA regulated hazardous waste. The following information is also included in the RCRIS_TS Report:

- Information pertaining to the status of facilities tracked by the RCRA Administrative Action Tracking System (RAATS)
- Inspections & evaluations conducted by federal and state agencies - All reported facility violations, the environmental statute(s) violated, and any proposed & actual penalties - Information pertaining to corrective actions undertaken by the facility or EPA

- A complete listing of EPA regulated hazardous wastes which are generated or stored on-site

Comprehensive Environmental Response, Compensation, and Liability Information System

The CERCLIS Database is a comprehensive listing of known or suspected uncontrolled or abandoned hazardous waste sites. These sites have either been investigated, or are currently under investigation by the U.S. EPA for the release, or threatened release of hazardous substances. Once a site is placed in CERCLIS, it may be subjected to several levels of review and evaluation, and ultimately placed on the National Priorities List (NPL). As of February 1995, CERCLIS sites designated "No Further Remedial Action Planned" (NFRAP) have been removed from the CERCLIS Database.

No Further Remedial Action Planned Sites

The No Further Remedial Action Planned Report (NFRAP), also known as the CERCLIS Archive, contains information pertaining to sites which have been removed from the U.S. EPA's CERCLIS Database. NFRAP sites may be sites where, following an initial investigation, either no contamination was found, contamination was removed quickly without need for the site to be placed on the NPL, or the contamination was not serious enough to require federal Superfund action or NPL consideration. consideration.

Resource Conservation and Recovery Information System - Large Quantity Generators

The RCRIS LG Report contains information pertaining to facilities which either generate more than 1000kg of EPA regulated hazardous waste per month, or meet other applicable requirements of the Resource Conservation And Recovery Act. The following information is also included in the RCRIS LG Report:

- Information pertaining to the status of facilities tracked by the RCRA Administrative Action Tracking System (RAATS)

- Inspections & evaluations conducted by federal and state agencies

- All reported facility violations, the environmental statute(s) violated, and any proposed & actual penalties

- Information pertaining to corrective actions undertaken by the facility or EPA

- A complete listing of EPA regulated hazardous wastes which are generated or stored on-site

Resource Conservation and Recovery Information System - Small Quantity Generators

The RCRIS SG Report contains information pertaining to facilities which either generate between 100kg and 1000kg of EPA regulated hazardous waste per month, or meet other applicable requirements of the Resource Conservation And Recovery Act. On advice of the U.S. EPA, ERIIS does not report so-called "RCRA Protective Filers." Protective Filers, commonly called Conditionally Exempt Small Quantity Generators (CESQG's), are facilities that have completed RCRA notification paperwork, but are not, in fact, subject to RCRA regulation. The determination of CESQG status is made by the U.S. EPA. The following information is also included in the RCRIS SG Report:
- Information pertaining to the status of facilities tracked by the RCRA Administrative Action Tracking System (RAATS)
- Inspections & evaluations conducted by federal and state agencies
- All reported facility violations, the environmental statute(s)

ENVIRONMENTAL RISK INFORMATION & IMAGING SERVICES DATABASE REFERENCE GUIDE

violated, and any proposed & actual penalties
- Information pertaining to corrective actions undertaken by the facility or EPA
- A complete listing of EPA regulated hazardous wastes which are

generated or stored on-site

DOCKET Dote of Data: 10/23/1996 Release Date: 11/08/1996 Date on System: 12/13/1996 US Environmental Protection Agency

Office of Enforcement 202/564-4114

Date of Data: 12/31/1992
Release Date: 05/01/1994
Date on System: 07/01/1994
US Environmental Protection Agency
Office of Pollution Prevention and Toxics
202/260-1531

ERNS

Date of Data: 08/22/1996
Release Date: 08/26/1996
Date on System: 11/22/1996
US Environmental Protection Agency Office of Solid Waste and Emergency Response 2 260-2342

ERNS92

Date of Data: 12/31/1992
Release Date: 05/01/1993
Date on System: //
US Environmental Protection Agency
Office of Solid Waste and Emergency Response
202/260-2342

ERMS ALL
Date of Data: 12/31/1991
Release Date: / /
Date on System: / /
US Environmental Protection Agency
Office of Solid Waste and Emergency Response
202/260-2342

ERNS93 Date of Data: 12/31/1993 Release Date: 12/31/1994
Date on System: 12/21/1994
US Environmental Protection Agency
Office of Solid Waste and Emergency Response
202/260-2342

ERNS94
Date of Data: 07/14/1994
Release Date: 12/06/1994
Date on System: 12/21/1994
US Environmental Protection Agency Office of Solid Waste and Emergency Response 202/260-2342

Civil Enforcement Docket

The Civil Enforcement Docket is the U.S. Environmental Protection Agency's system for tracking civil judicial cases filed on the Agency's behalf by the U.S. Department Of Justice. This report contains information on cases from 1972 to the present.

Toxic Release Inventory System of 1992

The TRI Report contains information concerning the industrial release and/or transfer of toxic chemicals as reportable under Title III of the Superfund Amendments And Reauthorization Act Of 1986 (SARA Title III).

Emergency Response Notification System

ERNS is a national computer database system that is used to store information concerning the sudden and/or accidental release of hazardous substances, including petroleum, into the environment. The ERNS Reporting System contains preliminary information on specific releases, including the spill location, the substance released, and the responsible party. Please note that the information in the ERNS Report pertains only to those releases that occured between January 1, 1996 and August 22, 1996.

Emergency Response Notification System - 1992

ERNS is a national computer database system that is used to store information on the sudden and/or accidental release of hazardous substances, including petroleum, into the environment. The ERNS Reporting System contains preliminary information on specific releases, including the spill location, the substance released, and the responsible party. Please note that the information in the ERNS Report pertains only to those releases that occured during 1992.

Emergency Response Notification System 1987-1991

ERNS is a national computer database system that is used to store information on the sudden and/or accidental release of hazardous substances, including petroleum, into the environment. The ERNS Reporting System contains preliminary information on specific releases, including the spill location, the substance released, and the responsible parry. Please note that the information in the ERNS Report pertains only to those releases that occured between 1987-1991.

Emergency Response Notification System - 1993

ERNS is a national computer database system that is used to store information on the sudden and/or accidental release of hazardous substances, including petroleum, into the environment. The ERNS Reporting System contains preliminary information on specific releases, including the spill location, the substance released, and the responsible party. Please note that the information in the ERNS Report pertains only to those releases that occured during 1993.

Emergency Response Notification System - 1994

ERNS is a national computer database system that is used to store information on the sudden and/or accidental release of hazardous substances, including petroleum, into the environment. The ERNS Reporting System contains preliminary information on specific releases, including the spill location, the substance released, and the responsible party. Please note that the information in the ERNS Report pertains only to those releases that occured between January 1, 1994 and July 14, 1994.

ENVIRONMENTAL RISK INFORMATION & IMAGING SERVICES DATABASE REFERENCE GUIDE

HWS Date of Data: 08/01/1996 Release Date: 11/07/1996
Date on System: 12/13/1996
IL Environmental Protection Agency

217/782-3397

LRST
Date of Data: 07/16/1996
Release Date: 07/17/1996
Date on System: 08/30/1996
IL Environmental Protection Agency
LUST Section
217/524-5907

SWF
Date of Data: 08/30/1993
Release Date: 09/01/1993
Date on System: 10/01/1993
IL Haz. Waste Research & Info. Center
Land-Based Disposal Sites Program
217/333-8940

RST
Date of Date: 05/01/1996
Release Date: 06/04/1996
Con System: 08/16/1996
World of Printing
Cot of the State Fire Marshal
217/753-6501

Illinois Category List

The Illinois Category List is a summary listing of those facilities that are deemed potentially hazardous by the Illinois Environmental Protection Agency. The Status field indicates which Illinois EPA Program is responsible for regulating the facility.

Illinois Leaking Underground Storage Tank Report

The Illinois Leaking Underground Storage Tank Report is a comprehensive listing of all reported leaking underground storage tanks reported within the State of Illinois.

Illinois Land-Based Disposal Sites Report

The Illinois Land-Based Disposal Site Report is an inventory of all active and historical waste disposal sites located within the State of Illinois. The inventory includes sites of all types including: municipal, industrial, hazardous, surface impoundments, illegal dumps, landfills, etc... Landfills tracked by the Northeastern Illinois Planning Commission are also included in the LBDS Report.

Illinois Underground Storage Tank Report

The Illinois Underground Storage Tank Report is a comprehensive listing of all registered underground storage tanks located within the State of Illinois.

ERIIS Report #	1241124	ENIIS SUMIMANT OF PLUTTAE	JEE 37123		Do	- 19 1006
ERIIS ID.	FACILITY/ADDRESS		DATABASE	DISTANCE FROM SITE	DIRECTION FROM SITE	c 18, 1996 MAP ID
17010032318	SHIPLER CONST CO INC 4968 E ROCKTON RD ROSCOE, IL 61073-8994 COUNTY: WINNEBAGO	– 0 - 1/4 Miles	RST	0.017 M i	NORTHWEST	2318
17010032311	MAKERITE MFG CO 13571 METRIC RD ROSCOE, IL 61073-9712 COUNTY: WINNEBAGO	- 1/4 - 1/2 Miles	RST	0.277 Mi	NORTHEAST	2311
17008002428	MAKERITE MFG CO INC 13571 METRIC RD ROSCOE, IL 61073-9712 COUNTY: WINNEBAGO		RCRIS_SG	0.277 M i	NORTHEAST	2428
17023003252	AAA DISPOSAL SYSTEMS INC ROSCOE, IL COUNTY: WINNEBAGO		SWF	0.300 Mi	SOUTHEAST	3252
7010032338	CLELAND VICKI 13850 DEARBORN AVE SOUTH BELOIT, IL 61080-9472 COUNTY: WINNEBAGO		RST	0.314 Mi	NORTHWEST	2338
7010032320	WASTE MANAGEMENT OF WISCONSIN 13125 N 2ND ST ROSCOE, IL 61073-8227 COUNTY: WINNEBAGO		RST	0.382 Mi	SOUTHEAST	2320
3006681	WASTE MGT OF ROCKFORD 13121 N 2ND ST ROSCOE, IL 61073-8227 COUNTY: WINNEBAGO		RCRIS_SG	0.385 Mi	SOUTHEAST	6681
17010032356	ST MARYS PEERLESS CEMENT CO 13700 DEARBORN AVE SOUTH BELOIT, IL 61080-9471 COUNTY: WINNEBAGO		RST	0.418 Mi	NORTHWEST	2356
7023003254	ERICKSON, ELDEN ROSCOE, IL COUNTY: WINNEBAGO		SWF	0.435 Mi	SOUTHEAST	3254
7007002692	SALTER BROADCASTING CO 4570 E ROCKTON RD ROSCOE, IL 61073-7418 COUNTY: WINNEBAGO	· 1/2 - 1 Miles	RCRIS_LG	0.531 Mi	SOUTHWEST	2692
7010032303	ELECTRO CAM CORPORATION 13701 METRIC RD ROSCOE, IL 61073-7639 COUNTY: WINNEBAGO		RST	0.575 Mi	NORTHEAST	2303
7023003249	BELOIT FOUNDRY CO ROSCOE, IL COUNTY: WINNEBAGO		SWF	0.590 Mi	NORTHEAST	3249
77^3003250	CHRISTENSEN, STAN ROSCOE, IL COUNTY: WINNEBAGO		SWF	0.617 Mi	NORTHEAST	3250
7023003343	DURGEON PIPE CO. S BELOIT, IL COUNTY: WINNEBAGO		SWF	0.665 Mi	NORTHWEST	3343
7023003401	BEHIND STATELINE PRINTING ROSCOE TWP, IL COUNTY: WINNEBAGO		SWF	0.690 Mi	SOUTHEAST	3401
17005009893	WARNER ELECTRIC BRAKE & CLUTCH HWY. 251 & MCCURRY RD. ROSCOE, IL COUNTY: WINNEBAGO		LRST	0.975 Mi	SOUTHEAST	9893
17013000074	WARNER ELECTRIC BRAKE & CLUTCH C HWY 251 & MCCURRY RD ROSCOE, IL 61073 COUNTY: WINNEBAGO	0	RCRIS_TS	0.975 Mi	SOUTHEAST	74
17039001113	GOLDIE FLOBERG CNTR WELLS 1MI E OF ROCKTON ROCKTON, IL 61072 COUNTY: WINNEBAGO	- > 1 Mile	NFRAP	1.009 Mi	SOUTHWEST	1113
17010032301	DANA CORP 5253 MCCURRY RD ROSCOE, IL 61073-9552 COUNTY: WINNEBAGO		RST	1.012 M i	SOUTHEAST	2301
7010032349	MATERIAL SERVICE CORP 4633 PRAIRIE HILL RD SOUTH BELOIT, IL 61080-2540 COUNTY: WINNEBAGO		RST	1.056 M i	NORTHWEST	2349

ERIIS Report #	134112A			De	c 18, 1996
ERIIS ID.	FACILITY/ADDRESS	DATABASE	DISTANCE FROM SITE	DIRECTION FROM SITE	MAP ID
17009000980	WOODWARD GOVERNOR CO. 1 WOODWARD WAY ROCKTON, IL 61072-1673 COUNTY: WINNEBAGO	TRI	1.634 Mi	NORTHWEST	980
17008007371	SENTRO 5365 EDITH LN ROSCOE, IL 61073-9573 COUNTY: WINNEBAGO	RCRIS_SG	1.663 M i	SOUTHEAST	7371
17008002029	FOREST CITY GEAR CO 11715 MAIN ST ROSCOE, IL 61073-9567 COUNTY: WINNEBAGO	RCRIS_SG	1.815 Mi	SOUTHEAST	2029
17010032300	CHARLES LAGRENE 11611 MAIN ST ROSCOE, IL 61073-9587 COUNTY: WINNEBAGO	RST	1.894 Mi	SOUTHEAST	2300
17005004549	HONONEGAH MOBIL 5213 ELEVATOR RD ROSCOE, IL 61073-9229 COUNTY: WINNEBAGO	LRST	1.931 M i	SOUTHEAST	4549
17010032309	KELLEY WILLIAMSON COMPANY 5213 ELEVATOR RD ROSCOE, IL 61073-9229 COUNTY: WINNEBAGO	RST	1.931 Mi	SOUTHEAST	2309
17008008286	TOWN AND COUNTRY CLEANERS 551B CLAYTON CIR ROSCOE, IL 61073-9533 COUNTY: WINNEBAGO	RCRIS_SG	1.952 M i	SOUTHEAST	8286

ERIIS ENVIRONMENTAL DATA REPORT RESOURCE CONSERVATION AND RECOVERY INFORMATION SYSTEM

Dec 18, 1996

MAP ID

74

ERIIS	S Report #134	112A		RESOURCE CONSERVATION AND RECOVERY IN RCRIS_TS - PLOTTABLE SITES - (PAGE 1		De
ERIIS EPA	S ID	FACILITY		ADDRESS	RAATS ISSUE DATE RAATS ACTION/STATUS RAATS PENALTIES	DISTANCE FROM SITE	DIRECTION FROM SITE
	13000074 006114169		ELECTRIC BRAKE & CLUTCH CO WINNEBAGO	HWY 251 & MCCURRY RD ROSCOE, IL 61073	/ / ACTION CODE: 3008(H) STA PROPOSED: \$ 0.00 FINAL: \$	0.975 MILES TUS: CONSENT AGREEMENT/F 0.00	SOUTHEAS' FINAL ORDER
				FACILITY VIOLATIONS			
	DATE DETER		DATE RESOLVED:	AREA OF VIOLATION:			
1. 2. 3. 4. 5.	06/30/95 04/20/93 10/23/92 03/07/89 06/05/85	·	10/04/95 09/16/94 02/02/93 07/03/89 05/07/86	TSD-FINANCIAL RESPONSIBILITY REQUIREMENTS GENERATOR-ALL REQUIREMENTS TSD-FINANCIAL RESPONSIBILITY REQUIREMENTS GENERATOR-ALL REQUIREMENTS GENERATOR-ALL REQUIREMENTS			
				FACILITY EVALUATIONS			
	EVALUATIO		EVALUATION AGENCY:	TYPE OF EVALUATION:		EA(S) OF EVALUATION:	
1. 2. 3. 4. 5.	06/05/85 03/07/89 04/26/89 10/23/92 04/20/93		STATE STATE STATE STATE STATE STATE STATE	COMPLIANCE EVALUATION INSPECTION COMPLIANCE EVALUATION INSPECTION COMPLIANCE SCHEDULE EVALUATION FINANCIAL RECORD REVIEW COMPLIANCE EVALUATION INSPECTION	GEF GEF GEF TSI GEF	NERATOR-ALL REQUIREMENTS NERATOR-ALL REQUIREMENTS NERATOR-ALL REQUIREMENTS O-FINANCIAL RESPONSIBILITY NERATOR-ALL REQUIREMENTS	
6.	06/30/95		STATE	FINANCIAL RECORD REVIEW	GEI TSI	VERATOR-LAND BAN REQUIRE! D-FINANCIAL RESPONSIBILITY !	MENTS REQUIREMENTS
				FACILITY ENFORCEMENTS			
	ENFORCEME	-	ENFORCEMENT AGENCY:	TYPE OF ACTION:		IALTY(S):	
1. 2. 3. 4. 5.	06/20/1985 04/05/1989 12/21/1992 07/09/1993 07/14/1995		STATE STATE STATE STATE STATE STATE STATE	WRITTEN, INFORMAL ADMINISTRATIVE ACTION			
				CORRECTIVE ACTIONS			
	ACTION ISS	UE DATE:		TYPE OF ACTION:			
1.	12/28/89			CONSENT ORDER			
	ACTION EFF			STATUTE VIOLATED:	_		
1.	12/28/89	••••		RCRA 3008(h) OR EQUIVALENT			
	EVENT ACT	UAL DATE:		SITE EVENT:			

RFA COMPLETED

......

1. 12/28/89

ERIIS ENVIRONMENTAL DATA REPORT RESOURCE CONSERVATION AND RECOVERY INFORMATION SYSTEM RCRIS_TS - PLOTTABLE SITES - PAGE 2

ERIIS ID EPA ID	FACILITY	ADDRESS	RAATS ISSUE DATE RAATS ACTION/STATUS RAATS PENALTIES	DISTANCE FROM SITE	DIRECTION FROM SITE	MAP II
--------------------	----------	---------	--	-----------------------	------------------------	--------

	EVENT ACTUAL DATE	:	SITE EVENT:
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	12/28/89 09/27/91 03/31/94 03/30/84 07/21/92 03/30/84 12/31/84 04/27/90 02/12/91 04/28/90 02/21/91 02/12/91 02/12/91 02/12/91		DETERMINATION OF NEED FOR AN RFIRFI IS NECESSARY CA PRIORITIZATIONFACILITY ASSIGNED A HIGH CORRECTIVE ACTION PRIORITY CA PRIORITIZATIONFACILITY ASSIGNED A HIGH CORRECTIVE ACTION PRIORITY RFI IMPOSITIONDATA COLLECTION REQUIRED RFI - WORKPLAN NOTICE OF DEFICIENCY ISSUED RFI WORKPLAN APPROVED CMS IMPOSITION CMS WORKPLAN APPROVED CMS WORKPLAN APPROVED CMS APPROVED DATE FOR REMEDY SELECTION (CM IMPOSED) CORRECTIVE MEASURES DESIGN APPROVED CMI WORKPLAN APPROVED
16. 17.	03/30/84 07/31/84		STABILIZATION MEASURES IMPLEMENTED STABILIZATION CONSTRUCTION COMPLETED
			HAZARDOUS WASTES
	WASTE CODE:	AMOUNT OF WASTE:	SOURCE OF INFO:

	WASTE CODE:	AMOUNT OF WASTE:	SOURCE OF INFO
	•••••	*************	
1.	F002	.00000	NOTIFICATION
2.	F017	.00000	NOTIFICATION
3.	F018	.00000	NOTIFICATION
4.	U228	.00000	NOTIFICATION

ERIIS ENVIRONMENTAL DATA REPORT COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY INFORMATION SYSTEM CERCLIS - BI OTTABLE SITES - RAGE 1

		CERCLIS - PLOTTABLE	SITES - PAGE 1			
ERIIS Report #134		Dec 1	18 , 1996			
ERIIS ID EPA ID	FACILITY	ADDRESS	COUNTY	DISTANCE FROM SITE	DIRECTION FROM SITE	MAPII
17001000377 ILD984836734	EVERGREEN MANOR GRO	DUNDWATER CONTAMINATIONCCURRY & ELEVATOR ROAD ROSCOE, IL 61073	WINNEBAGO	1.416 MILES	SOUTHWEST	377
SITE INS		START DATE COMPLETION 08/03/91 04/15/92 07/31/92 09/30/92 11/05/93 06/23/95	ON DATE			

ERIIS ENVIRONMENTAL DATA REPORT CERCLIS NO FURTHER REMEDIAL ACTION PLANNED SITES NFRAP - PLOTTABLE SITES - PAGE 1

ERIIS Report #134112A

Dec 18, 1996

ERIIS ID EPA ID	FACILITY	FACILITY ADDRESS	DISTANCE FROM SITE	DIRECTION FROM SITE	MAP II
1703 9 001113 ILD981956519	GOLDIE FLOBERG CNTR WELLS COUNTY: WINNEBAGO	1MI E OF ROCKTON ROCKTON, IL 61072	1.009 MILES	SOUTHWEST	1113

SITE EVENT(S)
DISCOVERY
PRELIMINARY ASSESSMENT
SCREENING SITE INSPECTION
NOT REPORTED

COMPLETE DATE 04/23/87 06/19/87 10/22/90 09/02/94

-

ERIIS ENVIRONMENTAL DATA REPORT RESOURCE CONSERVATION AND RECOVERY INFORMATION SYSTEM RCRIS_LG - PLOTTABLE SITES - PAGE 1

ERIIS Report #134	11128	HCHIS_LG - PLOTTABLE SITE	8 · PAGE 1		_	
Eniis neport #134	11120				Dec	18 , 1 99 6
ERIIS ID EPA ID	FACILITY	ADDRESS	RAATS ISSUE DATE RAATS ACTION/STATUS RAATS PENALTIES	DISTANCE FROM SITE	DIRECTION FROM SITE	MAP ID
17007002692 ILD984781807	SALTER BROADCASTING CO COUNTY: WINNEBAGO	4570 E ROCKTON RD ROSCOE, IL 61073-7418	FACILITY NOT REPORTED IN RAATS	0.531 MILES	SOUTHWEST	26 92
		HAZARDOUS WASTES				
WASTE COD	DE: AMOUNT OF WASTE:	SOURCE OF INFO:				
1. X002	.00000	NOTIFICATION				
17007000817 ILD010232890	ROCKFORD MFG GRP COUNTY: WINNEBAGO	11865 MAIN ST ROSCOE, IL 61073-8276	FACILITY NOT REPORTED IN RAATS	1.549 MILES	SOUTHEAST	817
		HAZARDOUS WASTES				
WASTE COL		SOURCE OF INFO:				
1. DOO1	.00000	NOTIFICATION				

FACILITY NOT REPORTED IN RAATS

1.634 MILES

NORTHWEST

2423

17007002423	WOODWARD GOVERNOR CO	1 WOODWARD WAY
ILD982609331	COUNTY: WINNEBAGO	ROCKTON, IL 61072-1674
		HAZARDOUS WASTES

	WASTE CODE:	AMOUNT OF WASTE:	SOURCE OF INFO:
1.	D000	.00000	NOTIFICATION
2.	D001	.00000	NOTIFICATION
3.	D006	.00000	NOTIFICATION
4.	D007	.00000	NOTIFICATION
5.	D008	.00000	NOTIFICATION
6.	F001	.00000	NOTIFICATION
7.	F003	.00000	NOTIFICATION
8.	F005	.00000	NOTIFICATION

ERIIS ENVIRONMENTAL DATA REPORT RESOURCE CONSERVATION AND RECOVERY INFORMATION SYSTEM RCRIS_8G - PLOTTABLE SITES - PAGE 1

ERIIS	Report #1341	12A						Dec	18, 1996
ERIIS EPA		FACILITY		ADDRESS	RAATS ISSUE DATE RAATS ACTION/STATUS RAATS PENALTIES		DISTANCE FROM SITE	DIRECTION FROM SITE	MAP ID
	08002428 63498414	MAKERITE MFG CO INC COUNTY: WINNEBAGO		13571 METRIC RD ROSCOE, IL 61073-9712	FACILITY NOT REPORTED IN	RAATS	0.277 MILES	NORTHEAST	2428
				HAZARDOUS WASTES					
	WASTE CODE		SOURCE						
1.	D001	.00000	NOTIFICA						
	08006681 84801829	WASTE MGT OF ROCKFORD COUNTY: WINNEBAGO		13121 N 2ND ST ROSCOE, IL 61073-8227	FACILITY NOT REPORTED IN	RAATS	0.385 MILES	SOUTHEAST	6681
				HAZARDOUS WASTES					
	WASTE CODE		SOURCE						
1.	D001	.00000	NOTIFICA						
	08005956 984782714	MATERIAL SERVICE CORP YARD 50 COUNTY: WINNEBAGO		4633 PRAIRIE HILL RD SOUTH BELOIT, IL 61080-2540	FACILITY NOT REPORTED IN	RAATS	1.056 MILES	NORTHWEST	5956
				HAZARDOUS WASTES					
	WASTE CODE			OF INFO:					
1.	D001	.00000	NOTIFICA						
	08004013 980615074	COLT INDUSTRIES ENGINE ACCESSORIES COUNTY: WINNEBAGO	OPER	6402 E ROCKTON RD ROSCOE, IL 61073-8812	FACILITY NOT REPORTED IN	RAATS	1.306 MILES	NORTHEAST	4013
				HAZARDOUS WASTES					
	WASTE COD			OF INFO:					
1. 2. 3. 4. 5.	D000 D001 D002 F001 F002 U226	.00000 .00000 .00000 .00000 .00000	NOTIFICA NOTIFICA NOTIFICA NOTIFICA NOTIFICA	ATION ATION ATION ATION ATION	~				
	08007371 984817791	SENTRO COUNTY: WINNEBAGO		5365 EDITH LN ROSCOE, IL 61073-9573	FACILITY NOT REPORTED IN	RAATS	1.863 MILES	SOUTHEAST	7 371

ERIIS ENVIRONMENTAL DATA REPORT RESOURCE CONSERVATION AND RECOVERY INFORMATION SYSTEM RCRIS_SG - PLOTTABLE SITES - PAGE 2

ERIIS	Report #1341	12A					Dec	18 , 1996
ERIIS EPA		FACILITY		ADDRESS	RAATS ISSUE DATE RAATS ACTION/STATUS RAATS PENALTIES	DISTANCE FROM SITE	DIRECTION FROM SITE	MAP ID
				HAZARDOUS WASTES				
	WASTE CODE		MOUNT OF WASTE:	SOURCE OF INFO:				
1. 2.	D001 F001	.00	0000	NOTIFICATION NOTIFICATION				
	08002029 051922433	FOREST CITY GE COUNTY: WINNE		11715 MAIN ST ROSCOE, IL 61073-9567	FACILITY NOT REPORTED IN RAATS	1.815 MILES	SOUTHEAST	2029
				HAZARDOUS WASTES				
	WASTE CODE		MOUNT OF WASTE:	SOURCE OF INFO:				
1. 2.	D000 D001	.00	0000	NOTIFICATION NOTIFICATION				
	08008286 984831057	TOWN AND COL COUNTY: WINNI	JNTRY CLEANERS EBAGO	5518 CLAYTON CIR ROSCOE, IL 61073-9533	FACILITY NOT REPORTED IN RAATS	1.952 MILES	SOUTHEAST	8286
				HAZARDOUS WASTES				
	WASTE CODE	=	MOUNT OF WASTE:	SOURCE OF INFO:				
1. 2.	D000 F002	.00	0000	NOTIFICATION NOTIFICATION				

ERHS ENVIRONMENTAL DATA REPORT TOXIC RELEASE INVENTORY SYSTEM TRI - PLOTTABLE SITES - PAGE 1

ERIIS Report #134112A

ERIIS ID

EPA ID

Dec 18, 1996 CONTACT DISTANCE **FACILITY** DIRECTION SIC CODE PHONE **FACILITY ID ADDRESS** COUNTY FROM SITE FROM SITE MAP ID 1 WOODWARD WAY ROCKTON, IL 61072 3728 **PHIL TURNER** WOODWARD GOVERNOR CO. WINNEBAGO 1.634 MILES 17009000980 **NORTHWEST** 980 (815) 877-7441 61072WDWRDONEWO ILD982609331

CHEMICAL 1,1,1-TRICHLOROETHANE

FUGITIVE AIR 1628 STACK AIR 3799

RELEASES (LBS.) TRANSFERS (LBS.)
R UNDER INJECTION LAI WATER

TOTAL 5427

POTW

OFF-SITE 16986

TOTAL 16986

ERIIS ENVIRONMENTAL DATA REPORT ILLMOIS LEAKING UNDERGROUND STORAGE TANKS LRST - PLOTTABLE SITES - PAGE 1

ERIIS Report #134112A

Dec 18, 1996

ERIIS ID	FACILITY	ADDRESS	DISTANCE FROM SITE	DIRECTION FROM SITE	MAP ID
17005009893 <u>IEPA ID</u> 201040		HWY. 251 & MCCURRY RD. ROSCOE, IL	0.975 MILES	SOUTHEAST	9893
17005006248 <u>IEPA ID</u> 201045		4633 PRAIRIE HILL RD SOUTH BELOIT, IL 61080-2540	1.056 MILES	NORTHWEST	6248
17005001459 <u>IEPA ID</u> 201045		4613 PRAIRIE HILL RD SOUTH BELOIT, IL 61080-2540	1.063 MILES	NORTHWEST	1459
17005004549 <u>IEPA ID</u> 201040		5213 ELEVATOR RD ROSCOE, IL 61073-9229	1.931 MILES	SOUTHEAST	4549

ERIIS ENVIRONMENTAL DATA REPORT ILLINOIS LAND-BASED DISPOSAL SITES SWF - PLOTTABLE SITES - PAGE 1

Dec 18, 1996

ERIIS Report #134112A

ERIIS ID IL EPA ID/ FACILITY/ **FACILITY STATUS** DISTANCE DIRECTION **US EPA ID** CITY, COUNTY OPERATOR NAME **PERMIT STATUS** FROM SITE FROM SITE MAP II 17023003252 AAA DISPOSAL SYSTEMS INC RICHARD TERMAAT **CLOSED FINAL COVER** 0.300 MILES SOUTHEAST **3**252 2010400004 ROSCOE, WINNEBAGO **UNPERMITTED UNAUTHORIZED** DISPOSAL TYPE **WASTE TYPE** LANDFILL **NONHAZARDOUS WASTE UNKNOWN WASTE** 17023003254 **ERICKSON, ELDEN ELDEN ERICKSON** 0.435 MILES SOUTHEAST 3254 2010400006 ROSCOE, WINNEBAGO **DISPOSAL TYPE WASTE TYPE** OPEN DUMP **NONHAZARDOUS WASTE UNKNOWN WASTE** 17023003249 **BELOIT FOUNDRY CO** CESINGER, JOHN R. **CLOSED FINAL COVER** 0.590 MILES NORTHEAST 3249 ROSCOE, WINNEBAGO UNPERMITTED UNAUTHORIZED 2010400001 DISPOSAL TYPE **WASTE TYPE** LANDFILL NONHAZARDOUS WASTE **UNKNOWN WASTE** 17023003250 CHRISTENSEN, STAN CHRISTENSEN, STAN **CLOSED FINAL COVER** 0.617 MILES NORTHEAST 3250 ROSCOE, WINNEBAGO UNPERMITTED UNAUTHORIZED 2010400002 DISPOSAL TYPE **WASTE TYPE** LANDFILL **NONHAZARDOUS WASTE UNKNOWN WASTE** DURGEON PIPE CO. 17023003343 **NOT AVAILABLE OPERATIONAL** 0.665 MILES NORTHWEST 3343 2019999999 S BELOIT, WINNEBAGO DISPOSAL TYPE **WASTE TYPE** LANDFILL **CONCRETE OR ASPHALT NONHAZARDOUS WASTE**

COMMENTS: FROM:RKFD-WINN CTY PLANNING COMM DISPOSAL INVENTORY OCT'81. LOCATED:S OF PRAIRIE HILL RD;W OF CNW RR TRACKS;W OF US 51.

ERIIS ENVIRONMENTAL DATA REPORT ILLINOIS LAND-BASED DISPOSAL SITES SWF - PLOTTABLE SITES - PAGE 2

ERIIS Report #134112A

ERIIS Report #134	4112A				Dec	18, 1996
ERIIS ID IL EPA ID/ US EPA ID	FACILITY/ CITY, COUNTY	OPERATOR NAME	FACILITY STATUS PERMIT STATUS	DISTANCE FROM SITE	DIRECTION FROM SITE	MAP II
17023003401 2019999999	BEHIND STATELINE PRINTING ROSCOE TWP, WINNEBAGO	NOT AVAILABLE	CLOSED	0.690 MILES	SOUTHEAST	3401
	POSAL TYPE IDFILL		WASTE TYPE			
LAN	IOFILE		NONHAZARDOUS WASTE			
COM	MMENTS: FROM:RKFD-WINN CTY PLANE	NING COMM DISPOSAL INVENTORY OCT	81. LOCATED:US 51;N OF ROCKTON ROAD.			
17023003253 2010400005	KELLY SAND & GRAVEL ROSCOE, WINNEBAGO	KELLY MIKE	CLOSED FINAL COVER UNPERMITTED UNAUTHORIZED	1.058 MILES	SOUTHWEST	3253
	POSAL TYPE		WASTE TYPE			
LAN	IDPILL		NONHAZARDOUS WASTE UNKNOWN WASTE			
17023003257 2010450001	BELOIT MUNICIPAL SOUTH BELOIT, WINNEBAGO	MAYOR AND COUNCIL	CLOSED FINAL COVER UNPERMITTED EXEMPT	1.129 MILES	NORTHWEST	3257
	POSAL TYPE IDFILL		WASTE TYPE GENERAL SOLID WASTE NONHAZARDOUS WASTE			
17023003330 2019999999	VILLAGE OF ROSCOE ROSCOE, WINNEBAGO	NOT AVAILABLE	CLOSED	1.554 MILES	SOUTHEAST	3330
	POSAL TYPE		WASTE TYPE			
LAN	IDFILL		NONHAZARDOUS WASTE UNKNOWN WASTE			
COM	MMENTS: FROM:RKFD-WINN CTY PLANN	NING COMM DISPOSAL INVENTORY OCT	81. LOCATED:N OF ELEVATOR RD AT RR TRACKS;BY N	VILLOW BROOK.		
17023003333 2019999999	BEHIND PEABODY WELLS ROSCOE, WINNEBAGO	NOT AVAILABLE	OPERATIONAL	1.554 MILES	SOUTHEAST	3333

DISPOSAL TYPE LANDFILL **WASTE TYPE**

LANDSCAPING DEBRIS NONHAZARDOUS WASTE

COMMENTS: FROM:RKFD-WINN CTY PLANNING COMM DISPOSAL INVENTORY OCT'81. LOCATED:E OF N 2ND ST FRONTAGE RD;N QF HONONEGAH ROAD.

ERIIS ENVIRONMENTAL DATA REPORT ILLINOIS LAND-BASED DISPOSAL SITES SWF - PLOTTABLE SITES - PAGE 3

ERHS Report #134112A

DISPOSAL TYPE

Dec 18, 1996

ERIIS ID IL EPA ID/ FACILITY/ US EPA ID CITY, COUNTY		OPERATOR NAME	FACILITY STATUS PERMIT STATUS	DISTANCE FROM SITE	DIRECTION FROM SITE	MAP II
17023003329 2019999999	CNW RAILROAD CO ROSCOE, WINNEBAGO	NOT AVAILABLE		1.569 MILES	NORTHWEST	3329
	OSAL TYPE		WASTE TYPE			
UPE	N DOMP		NONHAZARDOUS WASTE			
COM	IMENTS: FROM:RKFD-WINN CTY PLANI	ING COMM DISPOSAL INVENTORY	OCT'81. LOCATED:RAILROAD R-O-W NEXT TO IL-WISC SAN	D & GRAVEL CO.		
17023003340 201999999	PEARL LAKE S BELOIT, WINNEBAGO	NOT AVAILABLE	CLOSED	1.569 MILES	NORTHWEST	3340
	OSAL TYPE		WASTE TYPE			
LAN	DFILL		NONHAZARDOUS WASTE			
COM	IMENTS: FROM:RKFD-WINN CTY PLANI	ING COMM DISPOSAL INVENTORY	OCT'81. LOCATED:N END OF LAKE;W OF US 51;S OF GARDI	NER STREET.		
17023003341 2019999999	INTERPACE PIPE CO S BELOIT, WINNEBAGO	NOT AVAILABLE	OPERATIONAL	1.569 MILES	NORTHWEST	3341
	OSAL TYPE		WASTE TYPE			
LAN	DFILL		CONCRETE OR ASPHALT NONHAZARDOUS WASTE UNKNOWN WASTE			
COM	IMENTS: FROM:RKFD-WINN CTY PLANI	ING COMM DISPOSAL INVENTORY	Y OCT'81. LOCATED:QUARRY;W OF CNW RR;SE LAKE VICTOR	IIA;N PRAIRIEHILLRD		
17023003342 2019999999	SOUTH BELOIT CITY PK S BELOIT, WINNEBAGO	NOT AVAILABLE	OPERATIONAL	1.569 MILES	NORTHWEST	3342
	POSAL TYPE		WASTE TYPE			
LAN	DFILL		CONCRETE OR ASPHALT NONHAZARDOUS WASTE			
CON	MENTS: FROM:RKFD-WINN CTY PLANI	NING COMM DISPOSAL INVENTORY	Y OCT'81. LOCATED:QUARRY;SW OF EASTERN AVE;E OF S B	ELOIT PARK.		
17023003399 2019999999	RYKISKI ROCKTON TWP, WINNEBAGO	NOT AVAILABLE	CURRENT	1.570 MILES	SOUTHWEST	3399

COMMENTS: FROM:RKFD-WINN CTY PLANNING COMM DISPOSAL INVENTORY OCT'81. LOCATED:W OF DORR RD;S OF ROCKTON ROAD-DUMPING ON GROUND NOW

WASTE TYPE GENERAL SOLID WASTE

NONHAZARDOUS WASTE

ERIIS ENVIRONMENTAL DATA REPORT ILLINOIS UNDERGROUND STORAGE TANKS RST - PLOTTABLE SITES - PAGE 1

ERIIS Report #134112A

ERIIS Report #1	34112A					Dec 18, 1996
ERIIS ID FACILITY ID	FACILITY	ADDRESS	CONTACT	NUMBER OF TANKS	STATUS	MAP II
17010032318 1-003643	SHIPLER CONST CO INC DISTANCE FROM SITE: 0.017 MILES DIRECTION FROM SITE: NORTHWEST	4968 E ROCKTON RD ROSCOE, IL 61073-8994 COUNTY: WINNEBAGO	SHIPLER DENNIS 815-389-0900	3	ACTIVE	2318
17010032311 1-030076	MAKERITE MFG CO DISTANCE FROM SITE: 0.277 MILES DIRECTION FROM SITE: NOPTHEAST	13571 METRIC RD ROSCOE, IL 61073-9712 COUNTY: WINNEBAGO	BURKE PAUL JR 815-389-3902	0	CLOSED	2311
17010032338 1-013008	CLELAND VICKI DISTANCE FROM SITE: 0.314 MILES DIRECTION FROM SITE: NORTHWEST	13850 DEARBORN AVE SOUTH BELOIT, IL 61080-9472 COUNTY: WINNEBAGO	MONTGOMERY NORM 815-389-1982	1	ACTIVE	2338
17010032320 1-009334	WASTE MANAGEMENT OF WISCONSIN DISTANCE FROM SITE: 0.382 MILES DIRECTION FROM SITE: SOUTHEAST	13125 N 2ND ST ROSCOE, IL 61073-8227 COUNTY: WINNEBAGO	KAPPEL WM A 815-226-9803	5	ACTIVE	2320
17010032356 1-024843	ST MARYS PEERLESS CEMENT CO DISTANCE FROM SITE: 0.418 MILES DIRECTION FROM SITE: NORTHWEST	13700 DEARBORN AVE SOUTH BELOIT, IL 61080-9471 COUNTY: WINNEBAGO	RUEHL PAUL 313-842-4600	0	CLOSED	2356
17010032303 1-013943	ELECTRO CAM CORPORATION DISTANCE FROM SITE: 0.575 MILES DIRECTION FROM SITE: NORTHEAST	13701 METRIC RD ROSCOE, IL 61073-7639 COUNTY: WINNEBAGO	STRAW JOHN 815-389-2620	0	CLOSED	2303
17010032301 1-029544	DANA CORP DISTANCE FROM SITE: 1.012 MILES DIRECTION FROM SITE: SOUTHEAST	5253 MCCURRY RD ROSCOE, IL 61073-9552 COUNTY: WINNEBAGO	HANSEN JIM 815-389-4300	0	CLOSED	2301
17010032349 1-020242	MATERIAL SERVICE CORP DISTANCE FROM SITE: 1.056 MILES DIRECTION FROM SITE: NORTHWEST	4633 PRAIRIE HILL RD SOUTH BELOIT, IL 61080-2540 COUNTY: WINNEBAGO	WIEMAN DALE 815-389-3983	4	ACTIVE	2349
17010032336 1-031739	BRAKE REALTY AND CUSTOM BUILDERS INC DISTANCE FROM SITE: 1.063 MILES DIRECTION FROM SITE: NORTHWEST	4613 PRAIRIE HILL RD SOUTH BELOIT, IL 61080-2540 COUNTY: WINNEBAGO	BRANKE ORAL WAYNE 815-623-7101	1	ACTOVE	2336
17010032342 1-018301	GHA LOCK JOINT INC DISTANCE FROM SITE: 1.150 MILES DIRECTION FROM SITE: NORTHWEST	4416 PRAIRIE HILL RD SOUTH BELOIT, IL 61080-2545 COUNTY: WINNEBAGO	BUSS GARY L SR 815-389-4800	2	ACTIVE	2342
17010032305 1-022402	FAIRBANKS MORSE ENGINE ACCES OPR DISTANCE FROM SITE: 1.306 MILES DIRECTION FROM SITE: NORTHEAST	6402 E ROCKTON RD ROSCOE, IL 61073-8812 COUNTY: WINNEBAGO	JONES GARRETT M 815-389-4915	1	ACTIVE	2305
17010032298 1-032490	WINNEBAGO CO FOREST PRESERVE DIST DISTANCE FROM SITE: 1.473 MILES DIRECTION FROM SITE: SOUTHWEST	80 HONONEGAH RD ROCKTON, IL 61072-3008 COUNTY: WINNEBAGO	MCGONIGAL LARRY 815-824-2588	1	ACTIVE	2298
17010032350 1-033652	PRAIRIE HILL COMM CSD 133 DISTANCE FROM SITE: 1.567 MILES DIRECTION FROM SITE: NORTHEAST	14714 WILLOW BROOK RD SOUTH BELOIT, IL 61080-9554 COUNTY: WINNEBAGO	FINLEN JOHN M 815-389-2791	1	ACTIVE	2350
						1

ERNS ENVIRONMENTAL DATA REPORT ILLINOIS UNDERGROUND STORAGE TANKS RST - PLOTTABLE SITES - PAGE 2

ERIIS Report #134112A

Dec 18, 1996

· · · · · · · · · · · · · · · · · · ·						-
ERIIS ID FACILITY ID	FACILITY	ADDRESS	CONTACT	NUMBER OF TANKS	STATUS	MAP II
17010032300 1-033095	CHARLES LAGRENE DISTANCE FROM SITE: 1.894 MILES DIRECTION FROM SITE: SOUTHEAST	11611 MAIN ST ROSCOE, IL 61073-9587 COUNTY: WINNEBAGO	LAGRENE CHUCK 815-623-8586	o	EXEMPT	2300
17010032309 1-018392	KELLEY WILLIAMSON COMPANY DISTANCE FROM SITE: 1.931 MILES DIRECTION FROM SITE: SOUTHEAST	5213 ELEVATOR RD ROSCOE, IL 61073-9229 COUNTY: WINNEBAGO	GRIFFIN JOHN 815-397-9410	3	ACTIVE	23 09

Unplottable Sites

The remaining report pages list additional environmental sites that have been selected based on geographic criteria unique to your study site. They are classified as "unplottable sites" and require further investigation to assess their potential impact on your site.

How to Evaluate Unplottable Sites

Step 1

Streets Within the Radius: the following page is an alphabetical index of all streets that intersect or are contained within the largest study radius (usually one mile).

Step 2

Cross-Reference: use the "Streets Within the Radius" index to cross-reference the unplottable sites. For example, if Maple Avenue and Oak Avenue are listed in the street index, then any unplottable sites with a Maple Avenue or Oak Avenue address should be checked for possible impact on study site.

Questions on ERIIS' Proprietary Geocoding?

We're happy to answer any questions you might have about our data processing and point-geocoding (assigning a latitude and longitude to each address). Just give us a call on our toll-free number at (800) 989-0402 and let us know what state you're calling from. Our customer service staff is available from 8 a.m. to 8 p.m. (EST).

The ASTM Standard Practice For Environmental Site Assessments

As stated in the recently published Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process (E1527) by the American Society for Testing and Materials (ASTM):

"For large databases with numerous facility records (such as RCRA hazardous waste generators and registered underground storage tanks), the records are not practically reviewable unless they can be obtained from the source agency in the smaller geographic area of ZIP code (3.3.24)."

Therefore, this Report contains information available by latitude/longitude or by ZIP code. If your research requires environmental records for which only city or county information is available (i.e., no valid street or ZIP code) ERIIS will include this data at no extra charge.

STREET NAME

Abe Tri
Adele St
Aldrin Road
Allen St
Ambush Tri
Annapolis Road
Annulet Dr
Arena Dr
Armstrong Ave
Aspland Dr
Balsa Lane
Berbara Lane
Beecher Dr
Bellmawr Lane Bellmawr Lane Bellmawr Lane Bend River Road Betsy Ross Lane Blue Spruce Dr Bunn Dr Burnside Lane Burnside Lane
Cassidy Dr
Caswell St
Cedarbrook Road
Chevron Ct
Clayton Cir
Collins Dr
Commercial Pkwy
Cork Road
County Hwy 8
County Hwy 9
Crown Point Road
Dancette Dr
De la Tour Dr
Dearborn Ave
Degroff St
Dewey Road
Doreen Dr
Doris Dr
Doris Dr
Dorr Road Doreen Dr
Doris Dr
Doris Dr
Dorr Road
Duncan Lane
Echo Dr
Edgemere Ter
Edith Lane
Elevator Road
Equine Dr
Fairfax Road
Fox Ct
Frances Lane
Fulmar Dr
Gloucestor Road
Graystone Cir
Gridley Lane
Hayloft Ct
Hodges Lane
Hononegah Road
Hugh Dr
Huntsboro Lane
1- 90
Industrial Pkwy
Joan Dr Joan Dr John Dr Kennedy Dr Krotz Dr Kutzke Pkwy Lang Dr Lee Ash Lane Lee Lane Lejeune Lane
Leo Lane
Liston Ave
Love Road
Lozenge Dr
Lynnhurst Lane
Mack Trl
Main St
Mathews Ave
Mc Curry Road
Metric Road
Meyer Ct
Mockingbird Lane
Montclair Road
Nautical Ct
Northland Estates Ct
Oakland Ave Oakland Ave Oatseed Tri Owen Tri Palmer Road Palmer Road
Park Ave
Patriots Way
Patriots Clsa
Pfister Lane
Portsmough Lane
Prairie Hiir Road
Progressive Lane
Quail Trl
Quality Lane
Quantico Dr
Rae Ann Road
Ramp Ramp Randall Ct Ravine St Rockton Road

STREET NAME

Rollingsford Lane
Roscoe Ave
Ross Lane
Ross Lane
Rustlers Row
Saddle Club Dr
Sandhurst Dr
Sandpebble Dr
Sheppard Road
Smith Lane
Stamford Lane
State Hwy 251
Straw Lane
Sundance Trl
Sunrise Dr
Surf Trl
Sunrise Dr
Timothy Turn
Tourtelotte Trl
Tresemer Road
Valerie Road
Valerie Road
Valley Forge Trl
Vesper Dr
Vivian Ct
Wagon Lane
Wagon Lane
Wagon Lane
Wagon Lane
Whittemore Dr
Wild Deer Trl
Willow Brook Road
Wilmington Cise
Winchester Lane

ERIIS SUMMARY OF UNPLOTTABLE SITES (Facilities sorted alphabetically within ZIP Code)

RIIS Report #134112A				
ERIIS ID.	FACILITY/STREET	CITY/STATE/ZIP/COUNTY	DATABASE	
17007000750	BELOIT CORP HWY 2	SOUTH BELOIT, IL 61080 COUNTY: WINNEBAGO	RCRIS_LG	
17008012313	BOUVERAT INDS AMERICAN LTD 16050 WOOD MINT LN	SOUTH BELOIT, IL 61080-9588 COUNTY: WINNEBAGO	RCRIS_SG	
17008012167	CORDIAL COURT LOT 3B CORDIAL COURT	SOUTH BELOIT, IL 61080 COUNTY: WINNEBAGO	ACRIS_SG	
17009000986	ECOLAB INC. HWY. 251 & ROCKTON RD.	SOUTH BELOIT, IL 61080 COUNTY: WINNEBAGO	TRI	
17008000836	ECOLAB INC HWY 251 AND ROCKTON RD	SOUTH BELOIT, IL 61080 COUNTY: WINNEBAGO	RCRIS_SG	
,7008005620	METCALF AND EDDY INC 190 AND TOLL PLAZA ONE	SOUTH BELOIT, IL 61080 COUNTY: WINNEBAGO	RCRIS_SG	
17007000749	REGAL BELOIT CORP 5330 5404 E ROCTON RD	SOUTH BELOIT, IL 61080 COUNTY: WINNEBAGO	RCRIS_LG	
17010032363	UNITED TOOL & ENG CO PO BOX 218	SOUTH BELOIT, IL 61080-0218 COUNTY: WINNEBAGO	RST	
0001872	611 QUALITY LANE	SOUTH BELOIT, IL 61080-2609 COUNTY: WINNEBAGO	ERNS_ALL	
17023003256	AAA DISPOSAL SYSTEMS	ROSCOE, IL COUNTY: WINNEBAGO	SWF	
17023003264	CHICAGO AND NORTHWESTERN R.R.	SOUTH BELOIT, IL COUNTY: WINNEBAGO	SWF	
17023003410	FOSTER FARM	ROCKTON TWP, IL COUNTY: WINNEBAGO	SWF	
17023003262	FRED RYKOWSKI	SOUTH BELOIT, IL COUNTY: WINNEBAGO	SWF	
17023003261	GHA LOCK JOINT (CRETEX PIPE)	SOUTH BELOIT, IL COUNTY: WINNEBAGO	SWF	
17023003248	GROUNDWATER CONTAM'N INCIDENT	ROCKTON, IL COUNTY: WINNEBAGO	SWF	
003277	MCCLEARY INDUSTRIES INC	SOUTH BELOIT, IL COUNTY: WINNEBAGO	SWF	
17023003275	REGAL-BELOIT CORP.	SOUTH BELOIT, IL COUNTY: WINNEBAGO	SWF	
.7023003276	REGAL-BELOIT CORPORATION	SOUTH BELOIT, IL COUNTY: WINNEBAGO	SWF	
(7023003267	SOUTH BELOIT MUNICIPAL	SOUTH BELOIT, IL COUNTY: WINNEBAGO	SWF	

ERIIS ENVIRONMENTAL DATA REPORT RESOURCE CONSERVATION AND RECOVERY INFORMATION SYSTEM RCRIS_LG - UNPLOTTABLE SITES

ERIIS Report #134112A

Dec 18, 1996

ERII					RAATS ISSUE DATE RAATS ACTION/STATUS	
EPA	10	FACILITY		ADDRESS	RAATS PENALTIES	
	17007000749 REGAL BELOIT CORP ILD006111751 COUNTY: WINNEBAGO				FACILITY NOT REPORTED IN RAATS	
				HAZARDOUS WASTES		
	WASTE COD		AMOUNT OF WASTE:	SOURCE OF INFO:		
1, 2, 3,	D001 U032 U226	•••	.00000 .00000 .00000	NOTIFICATION NOTIFICATION NOTIFICATION		
	17007000750 BELOIT CORP ILD006114086 COUNTY: WINNEBAGO			HWY 2 SOUTH BELOIT, IL 61080	FACILITY NOT REPORTED IN RAATS	
				FACILITY VIOLATIONS		
	DATE DETER		DATE RESOLVED:	AREA OF VIOLATION:		
1. 2.	06/13/86 06/13/86	··-	12/02/87 07/26/86	GENERATOR-ALL REQUIREMENTS GENERATOR-ALL REQUIREMENTS		
				FACILITY EVALUATIONS		
	EVALUATION		EVALUATION AGENCY:	TYPE OF EVALUATION:	AREA(S) OF EVALUATION:	
1.	06/13/86	· ··	STATE	NON-FINANCIAL RECORD REVIEW	GENERATOR-ALL REQUIREMENTS	
				FACILITY ENFORCEMENTS		
	ENFORCEME		ENFORCEMENT AGENCY:	TYPE OF ACTION:	PENALTY(S):	
1.	06/24/1986		STATE	WRITTEN, INFORMAL ADMINISTRATIVE ACTION	••••••	

ERIS ENVIRONMENTAL DATA REPORT RESOURCE CONSERVATION AND RECOVERY INFORMATION SYSTEM RCRIS SG - UNPLOTTABLE SITES

Dec 18, 1996

ERIIS Report #134112A RAATS ISSUE DATE **RAATS ACTION/STATUS ERHS ID RAATS PENALTIES ADDRESS FACILITY EPA ID FACILITY NOT REPORTED IN RAATS** 17008000836 **ECOLAB INC HWY 251 AND ROCKTON RD** ILD006216386 **COUNTY: WINNEBAGO SOUTH BELOIT, IL 61080** FACILITY VIOLATIONS DATE RESOLVED: AREA OF VIOLATION: **DATE DETERMINED:** -----------**GENERATOR-ALL REQUIREMENTS** 04/26/88 01/07/88 FACILITY EVALUATIONS **EVALUATION DATE: EVALUATION AGENCY:** TYPE OF EVALUATION: AREA(S) OF EVALUATION: -----COMPLIANCE EVALUATION INSPECTION 01/07/88 STATE **GENERATOR-ALL REQUIREMENTS** FACILITY ENFORCEMENTS **ENFORCEMENT DATE: ENFORCEMENT AGENCY:** TYPE OF ACTION: PENALTY(S): -----02/24/1988 STATE WRITTEN, INFORMAL ADMINISTRATIVE ACTION HAZARDOUS WASTES **WASTE CODE: AMOUNT OF WASTE: SOURCE OF INFO:** NOTIFICATION .00000 D000 .00000 NOTIFICATION 2. D001 .00000 NOTIFICATION 3. D002 4. D006 .00000 NOTIFICATION .00000 **NOTIFICATION** 5. D007 **NOTIFICATION** B000 .00000 NOTIFICATION .00000 F001 .00000 **NOTIFICATION** 8. F003 NOTIFICATION .00000 9. F005 .00000 NOTIFICATION 10. F017 17008005620 METCALF AND EDDY INC 190 AND TOLL PLAZA ONE **FACILITY NOT REPORTED IN RAATS COUNTY: WINNEBAGO** ILD984766733 SOUTH BELOIT, IL 61080 HAZARDOUS WASTES **SOURCE OF INFO: WASTE CODE: AMOUNT OF WASTE: NOTIFICATION** .00000 F001 .00000 NOTIFICATION F002 **FACILITY NOT REPORTED IN RAATS** 17008012167 CORDIAL COURT **LOT 3B CORDIAL COURT** ILR000016998 COUNTY: WINNEBAGO SOUTH BELOIT, IL 61080

ERIIS ENVIRONMENTAL DATA REPORT TOXIC RELEASE INVENTORY SYSTEM TRI - UNPLOTTABLE SITES

ERIIS Report #13	34112A				IN - ONFLOTTABL	L SITES				τ	Dec 18, 1996
ERIIS ID EPA ID	FACILITY FACILITY ID	,	ADDRESS		COUNTY	SIC CODE	CONTACT PHONE				
17009000986 ILD006216386	ECOLAB INC. 61080CLBNCHWY25		HWY. 251 & ROCI SOUTH BELOIT, IL		WINNEBAGO	3561	DARRELL AARTI (815) 389-0618				
				RE	ELEASES (LBS.)TRANSFE	RS (LBS.)					
	<u>AL</u> :OMPOUNDS JM COMPOUNDS	FUGITIVE AIR 5 5	STACK AIR 5 F	WATER 0 0	UNDER INJECTION O O	<u>LAND</u> 0 0	10 10 10	<u>POTW</u> 0 0	OFF-SITE 210 400	<u>TOTAL</u> 210 400	

ERIIS ENVIRONMENTAL DATA REPORT ILLINOIS LAND-BASED DISPOSAL SITES SWF - UNPLOTTABLE SITES

ERIIS Report #134112A

ERIIS ID

Dec 18, 1996

FACILITY STATUS IL EPA ID/ FACILITY/ **OPERATOR NAME PERMIT STATUS** CITY, COUNTY **US EPA ID** 17023003248 **GROUNDWATER CONTAM'N INCIDENT GROUNDWATER CONTAM'N INCIDENT** 2010350003 **ROCKTON, WINNEBAGO WASTE TYPE DISPOSAL TYPE** LANDFILL **HAZARDOUS SOLID WASTE NOT AVAILABLE** 17023003410 **FOSTER FARM ROCKTON TWP, WINNEBAGO** 2019999999 **WASTE TYPE** DISPOSAL TYPE **MUNICIPAL SEWAGE SLUDGE** LAND APPLICATION NONHAZARDOUS WASTE COMMENTS: FROM:RKFD-WINN CTY PLANNING COMM DISPOSAL INVENTORY OCT '81. LOCATED:NOT MAPPED. **AAA DISPOSAL SYSTMS OPERATIONAL** 17023003256 AAA DISPOSAL SYSTEMS ROSCOE, WINNEBAGO **UNPERMITTED EXEMPT** 2010400008 **WASTE TYPE** DISPOSAL TYPE LANDFILL NONHAZARDOUS WASTE **UNKNOWN WASTE GHA LOCK JOINT (CRETEX PIPE) OPERATIONAL GHA LOCK JOINT** 17023003261

UNPERMITTED UNAUTHORIZED

WASTE TYPE

CONCRETE OR ASPHALT NONHAZARDOUS WASTE **UNKNOWN WASTE**

COMMENTS: ONSITE INV:CONCRETE PIPE-550 TONS/YR

17023003262 FRED RYKOWSKI 2010450006

2010450005

SOUTH BELOIT, WINNEBAGO

SOUTH BELOIT, WINNEBAGO

MR. FRED RYKOWSKI

DISPOSAL TYPE

DISPOSAL TYPE LANDFILL

LANDFILL

WASTE TYPE

NONHAZARDOUS WASTE UNKNOWN WASTE

ERIIS ENVIRONMENTAL DATA REPORT ILLINOIS LAND-BASED DISPOSAL SITES SWF - UNPLOTTABLE SITES

ERIIS Report #134112A

Dec 18, 1996

ERIIS ID IL EPA ID/ **US EPA ID**

FACILITY/ CITY, COUNTY

OPERATOR NAME

FACILITY STATUS PERMIT STATUS

17023003264 2010450008

CHICAGO AND NORTHWESTERN R.R. SOUTH BELOIT, WINNEBAGO

C.N.W.R.R.

DISPOSAL TYPE

LANDFILL

WASTE TYPE

NONHAZARDOUS WASTE UNKNOWN WASTE

17023003267 2010450011

SOUTH BELOIT MUNICIPAL SOUTH BELOIT, WINNEBAGO CITY OF S. BELOIT

DISPOSAL TYPE

LANDFILL

WASTE TYPE

NONHAZARDOUS WASTE

17023003275 2010450021

REGAL-BELOIT CORP. SOUTH BELOIT, WINNEBAGO REGAL-BELOIT CORP.

CLOSED FINAL COVER

UNPERMITTED UNAUTHORIZED

DISPOSAL TYPE

LANDFILL

WASTE TYPE

MUNICIPAL SEWAGE SLUDGE

INDUSTRIAL HAZARDOUS SOLID WASTE

HAZARDOUS LIQUID WASTE

COMMENTS: METHOD OF DISPOSAL "UNDERGROUND INJECTION WELL".

17023003276 2010450021

REGAL-BELOIT CORPORATION SOUTH BELOIT, WINNEBAGO

REGAL-BELOIT CORP

DISPOSAL TYPE

LANDFILL

WASTE TYPE

NONHAZARDOUS WASTE

COMMENTS: STATUS OF CLEANING "UNCLASSIFIED".

17023003277 2010450026

MCCLEARY INDUSTRIES INC SOUTH BELOIT, WINNEBAGO MCCLEARY INDUSTRIES INC

OPERATIONAL PERMITTED

DISPOSAL TYPE LAND APPLICATION

WASTE TYPE

NONHAZARDOUS WASTE

APPENDIX B

STRATIGRAPHIC AND INSTRUMENTATION LOGS FOR CRA PIEZOMETERS AND MONITORING WELLS

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

(CL-01) Page 1 of 2

PROJECT NAME: EVERGREEN MANOR SITE

PROJECT NUMBER: 9234 CLIENT: ECOLAB, INC.

LOCATION: ROSCOE, ILLINOIS

HOLE DESIGNATION: P-1

DATE COMPLETED: NOVEMBER 19, 1996

DRILLING METHOD: 4 14" HSA CRA SUPERVISOR: P. KLICK

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
ft. BGS		ft. AMSL	INSTALLATION	NUMBER	STATE	VALUE	PIO
	REFERENCE POINT (Top of Riser) GROUND SURFACE	772.95 770.8	1	Ž	ST	ż	(ppm
-	Grass, roots, topsoil with clay and sand	770.1	20000000				
2.5	SW-SAND, trace coarse sand and gravel, fine to medium grained, medium dense to dense, light brown, dry		CONCRETE	,			
5.0				ıss	X	25	0
7.5	- trace coarse gravel		2" Ø PVC PIPE				
12.5				255	X	82	0
15.0				355	X	76	0.2
-20.0	- little fine to coarse gravel		BENTONITE CHIPS	455		52	1.4
-22.5						32	
-25.0	– moist			588	X	46	0
-27.5							
-30.0	- trace fine gravel		8" Ø BOREHOLE	655	X	47	1.1
-32.5							

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

WATER FOUND

STATIC WATER LEVEL

▼

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

(CL-01) Page 2 of 2

PROJECT NAME: EVERGREEN MANOR SITE

PROJECT NUMBER: 9234 CLIENT: ECOLAB, INC.

LOCATION: ROSCOE, ILLINOIS

HOLE DESIGNATION: P-1

DATE COMPLETED: NOVEMBER 19, 1996

DRILLING METHOD: 4 K" HSA CRA SUPERVISOR: P. KLICK

T. BGS TILL AND LANGE THE TABLE TO THE TABLE T	EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR	<u></u>	S	AMPLE	
SP-SAND, trace coarse sand, fine grained, dense, light brown, moist 7.5 O.0 - trace fine gravel, brown, saturated END OF HOLE @ 48ft BGS 724.6 END OF HOLE @ 48ft BGS 724.6 SCREEN DETAILS Screened Interval: A0 to 45t BGS Length: 5.01t Diameter: 2" Sixt Size: #00 Materials: #30 Sand 7.5 0.0 7.5 0.0 7.5 0.0 7.5 0.0 2.5	. 865		II. AMSL	INSTALLATION	NUMBER	STATE	'N' VALUE	PIO (ppr
Trace fine gravel, brown, saturated Trace fine	7.5	SP-SAND, trace coarse sand, fine grained, dense, light brown, moist	734.8	PIPE BENTONITE		X	36	0.6
### PACK BOREHOLE ### PACK ### PACK BOREHOLE ### PACK	0.0	– trace fine gravel, brown, saturated		SAND PACK		\bigvee	23	
### Total Control Cont	2.5			SCREEN				'
SCREEN DETAILS Screened Interval: 40 to 45t BGS Length: 5.0ft Diameter: 2" Slot Size: #10 Material: PVC Sand Pack: 38 to 46ft BGS Material: #30 Sand 2.5 Materi	5.0	END OF HOLE & 40th DOO	724.6					ı
Slot Size: #10 Material: PVC Sand Pack: 38 to 48ft BGS Material: #30 Sand 7.5 0.0 2.5	7.5	END OF HOLE & 4611 BGS		Screened Interval: 40 to 45t BGS Length: 5.0ft				l
2.5 5.0 7.5 0.0 2.5	0.0			Slot Size: #10 Material: PVC Sand Pack:				
7.5	2.5			Material: #30 Sand				
0.0	5.0							!
2.5	7.5							
	0.0							
5.0	2.5							
	5.0							
7.5	7.5							

WATER FOUND T STATIC WATER LEVEL \$

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

(CL-02) Page 1 of 1

PROJECT NAME: EVERGREEN MANOR SITE

PROJECT NUMBER: 9234

CLIENT: ECOLAB, INC. LOCATION: ROSCOE, ILLINOIS HOLE DESIGNATION: P-2

DATE COMPLETED: NOVEMBER 19, 1996

DRILLING METHOD: 4 14" HSA CRA SUPERVISOR: P. KLICK

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
t. BGS	REFERENCE POINT (Top of Riser)	ft. AMSL	INSTALLATION	NUMBER	STATE	N. VALUE	PID (ppm
	GROUND SURFACE	747.8		ž	S	ż	()
	Grass, roots, weeds SC-SAND, some clay, trace fine gravel, fine to	747.3	CONCRETE SEAL				
2.5	medium grained, orange brown, moist SW-SAND, trace coarse fine sand and fine to coarse gravel, medium dense, light brown, slightly moist	745.8					
5.0			2" Ø PVC PIPE	ISS	\times	16	0
7.5							
10.0	- little coarse sand and fine gravel, dry		BENTONITE CHIPS	288	X	43	0.3
12.5							
15.0	SP-SAND, trace coarse sand and fine gravel, fine grained, medium dense, light brown, moist	732.8		355	X	25	0
17.5			SAND PACK				
20.0	- saturated		SAND FACE	455	\times	24	0
22.5			WELL SCREEN				
25.0	END OF HOLE @ 25.5ft BGS	722.3	BOREHOLE				
27.5			SCREEN DETAILS Screened Interval: 19.7 to 24.7t BGS Length: 5.0ft Diameter: 2"				
30.0			Slot Size: #10 Material: PVC Sand Pack: 17.7 to 25.5ft BGS Material: #30 Sand				
32.5							
		1					

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE
WATER FOUND ♀ STATIC WATER LEVEL ▼

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

(CL-03) Page 1 of 2

PROJECT NAME: EVERGREEN MANOR SITE

PROJECT NUMBER: 9234 CLIENT: ECOLAB, INC.

LOCATION: ROSCOE, ILLINOIS

HOLE DESIGNATION: MW-1

DATE COMPLETED: DECEMBER 3, 1996

DRILLING METHOD: 4 K" HSA CRA SUPERVISOR: P. KLICK

Grass, roots, black topsoil with clay and sand SW-SAND, trace clay and fine to coarse gravel, fine to coarse grained, loose, brown, moist 7 10.0 — no recovery 12.5 15.0 — no clay, light brown SP-SAND, trace fine gravel, fine grained, medium dense, light brown, moist 17 SSW-SAND, trace fine gravel, fine to coarse gravel, fine to coarse grained, very loose to medium dense, light brown, wet 17 SSW-SAND, trace fine to coarse gravel, fine to coarse grained, wet grained, medium dense, light brown, wet	DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONIT	OR		S	AMPLE	
SN-SAND, trace clay and fine to coarse grained, loose, brown, moist SN-SAND, trace clay and fine to coarse grained, loose, brown, moist To a strainless street status and fine to coarse grained, loose, brown, moist SN-SAND, trace fine gravet, fine grained, medium dense, light brown, moist SP-SAND, trace fine gravet, fine grained, medium dense, light brown, moist SN-SAND, trace fine to coarse gravet, fine to coarse gravet, fine to coarse grained, very loose to medium dense, light brown, wet	t. BGS		ft. AMSL	INSTALLA	ATION	NUMBER	STATE	N' VALUE	PID (ppm
gravel, fine to coarse grained, loose, brown, 10.0		Grass, roots, black topsoil with clay and sand		\ 	·				
-7.5 -10.0 - no recovery -12.5 -15.0 - no clay, light brown -17.5 -20.0 SP-SAND, trace fine gravel, fine grained, medium dense, light brown, moist SP-SAND, trace fine to coarse gravel, fine to coarse gravel, fine to coarse grained, very loose to medium dense, light brown, wet SSS TAINLESS STEEL PIPE 255 BENTONITE CHIPS 455 17 27.0 SP-SAND, trace fine to coarse gravel, fine to coarse gravel, fine to coarse grained, very loose to medium dense, light brown, wet	2.5	SW-SAND, trace clay and fine to coarse gravel, fine to coarse grained, loose, brown,			CONCRETE SEAL	1			
-10.0 - no recovery -12.5 -15.0 - no clay, light brown -17.5 -20.0 SP-SAND, trace fine gravel, fine grained, medium dense, light brown, moist -22.5 -25.0 SM-SAND, trace fine to coarse gravel, fine to coarse grained, very loose to medium dense, light brown, wet -27.5 -30.0	5.0					155	X	7	7.5
-12.5 -15.0 - no clay, light brown -17.5 -20.0 SP-SAND, trace fine gravel, fine grained, medium dense, light brown, moist -22.5 -25.0 SW-SAND, trace fine to coarse gravel, fine to coarse grained, very loose to medium dense, light brown, wet -27.5 -30.0	7.5								
-12.5 -15.0 - no clay, light brown -17.5 -20.0 SP-SAND, trace fine gravel, fine grained, medium dense, light brown, moist -22.5 -25.0 SW-SAND, trace fine to coarse gravel, fine to coarse grained, very loose to medium dense, light brown, wet -27.5 -30.0	10.0	- no recovery			STAINLESS STEEL	255		8	NR
-17.5 -20.0 SP-SAND, trace fine gravel, fine grained, medium dense, light brown, moist -22.5 -25.0 SW-SAND, trace fine to coarse gravel, fine to coarse grained, very loose to medium dense, light brown, wet -27.5 -30.0	12.5						/		
SP-SAND, trace fine gravel, fine grained, medium dense, light brown, moist 25.0 SW-SAND, trace fine to coarse gravel, fine to coarse grained, very loose to medium dense, light brown, wet 27.5 30.0	15.0	- no clay, light brown				355	X	9	18.5
SP-SAND, trace fine gravel, fine grained, medium dense, light brown, moist -22.5 -25.0 SW-SAND, trace fine to coarse gravel, fine to coarse grained, very loose to medium dense, light brown, wet -27.5 -30.0	17.5								
25.0 SW-SAND, trace fine to coarse gravel, fine to coarse grained, very loose to medium dense, light brown, wet 2 30.0	20.0	SP-SAND, trace fine gravel, fine grained, medium dense, light brown, moist	-		— BENTONITE CHIPS	455	X	17	8.6
2 -27.5 Sw-SAND, trace tine to coarse gravel, fine to coarse grained, very loose to medium dense, light brown, wet	22.5								
-27.5 -30.0	25.0	coarse grained, very loose to medium dense,				555	X	2	15.3
-30.0 8" ø	27.5	-) }			
BOREHOLE ess 15	30.0				— 8" Ø BOREHOLE	ess	X	15	52.
-32.5	32.5								

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

(CL-03) Page 2 of 2

PROJECT NAME: EVERGREEN MANOR SITE

PROJECT NUMBER: 9234 CLIENT: ECOLAB, INC.

LOCATION: ROSCOE, ILLINOIS

HOLE DESIGNATION: MW-1

DATE COMPLETED: DECEMBER 3, 1996

DRILLING METHOD: 4 %" HSA CRA SUPERVISOR: P. KLICK

37.5	SP-SAND, fine grained, medium dense, light	ft. AMSL	INSTALLATION	NUMBER	STATE	N' VALUE	PID
	SP-SAND fine grained medium dense light			₹	ST	/Λ ,N,	(ppm
	broen, wet		2" Ø STAINLESS STEEL PIPE BENTONITE CHIPS		X	11	17.
40.0	- trace fine gravel, very loose, saturated		SAND PACK	BSS	X	2	10.
42.5			WELL SCREEN				
45.0	END OF HOLE @ 45.5ft BGS Notes: NR - no recovery	_	BOREHOLE SCREEN DETAILS				
47.5	Notes. Nn - no recovery		Screened Interval: 39.3 to 44.3t BGS Length: 5.0ft Diameter: 2" Slot Size: #10				
50.0			Material: Stainless Steel Sand Pack: 37.3 to 45.5ft BGS Material: #30 Sand				
52.5							
55.0							
57.5							
60.0							
62.5							
65.0							
67.5							

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

(CL-04) Page 1 of 2

PROJECT NAME: EVERGREEN MANOR SITE

PROJECT NUMBER: 9234

CLIENT: ECOLAB, INC. LOCATION: ROSCOE, ILLINOIS HOLE DESIGNATION: MW-2

DATE COMPLETED: DECEMBER 2, 1996

DRILLING METHOD: 4 K" HSA CRA SUPERVISOR: P. KLICK

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
ft. BGS		ft. AMSL	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm)
	Grass, roots, black topsoil with clay and sand			1	1		
-2.5	SW-SAND, trace fine gravel, fine to coarse grained, medium dense, light brown, dry		CONCRETE				
-5.0				ıss	X	10	0.2
-7.5							
-10.0	- trace coarse gravel, dense to very dense		2" Ø STAINLESS STEEL PIPE	255	X	59	0.5
-12.5					<u> </u>		
-15.0				355	X	42	0.6
-17.5							
-20.0			BENTONITI CHIPS	455	X	45	0.6
-22.5							
-25.0	SP-SAND, fine grained, medium dense, light brown			555	X	24	1.9
-27.5							
-30.0	trace fine graveltrace coarse sand		8" Ø BOREHOLE	655	X	24	0.8
-32.5					<u> </u>		
ИС	DIES: MEASURING POINT ELEVATIONS MAY CHANGE; F WATER FOUND ▼ STATIC WATER LEVEL ▼	REFER TO	CURRENT ELEVATION TABLE		•	·	

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

(CL-04) Page 2 of 2

PROJECT NAME: EVERGREEN MANOR SITE

PROJECT NUMBER: 9234 CLIENT: ECOLAB, INC.

LOCATION: ROSCOE, ILLINOIS

HOLE DESIGNATION: MW-2

DATE COMPLETED: DECEMBER 2, 1996

DRILLING METHOD: 4 14" HSA CRA SUPERVISOR: P. KLICK

EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR	<u> </u>	, S	AMPLE	
. BGS		ft. AMSL	INSTALLATION	NUMBER	STATE	'N' VALUE	PIC (ppr
37.5			2" Ø STAINLESS STEEL PIPE BENTONITE CHIPS		X	23	0.9
0.01	- loose, saturated		SAND PACK	855	X	7	0.6
12.5			WELL SCREEN 8" Ø BOREHOLE				
15.0	END OF HOLE @ 45.5ft BGS	_					
17.5			SCREEN DETAILS Screened interval: 40 to 45t BGS Length: 5.0ft Diameter: 2"				
50.0			Slot Size: #10 Material: Stainless Steel Sand Pack: 38 to 45.5ft BGS Material: #30 Sand				
52.5							
55.0							
57.5							
80.0							
32.5							
35.0							
37.5							
ļ							

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

(CL-05) Page 1 of 2

PROJECT NAME: EVERGREEN MANOR SITE

PROJECT NUMBER: 9234 CLIENT: ECOLAB, INC.

LOCATION: ROSCOE, ILLINOIS

HOLE DESIGNATION: MW-3

DATE COMPLETED: DECEMBER 3, 1996

DRILLING METHOD: 4 14" HSA CRA SUPERVISOR: P. KLICK

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	<u>. </u>
t. BGS		ft. AMSL	INSTALLATION	NUMBER	STATE	N' VALUE	PID (ppm
	Grass, roots, black topsoil with clay and sand	7			 		
2.5	SW-SAND, trace fine gravel, fine to coarse grained, medium dense TO dense, light brown, dry		CON	CRETE			
5.0				ıss	X	32	0.7
7.5							
10.0	- no recovery, coarse gravel in cuttings		2" Ø STA STE PIPE	INLESS EL 2SS	7	26	NR
12.5			F1/C				
15.0	SP-SAND, trace fine gravel, fine grained, medium dense, light brown, dry			355	X	18	0.6
17.5							
20.0			CHII	TONITE 4SS	X	18	0.4
22.5							
25.0	- 2" thick gravelly layer			555	X	10	6.5
27.5							
30.0	SW-SAND, fine to coarse gravel, fine to coarse grained, very dense, light brown, moist	-	8" g BOR	EHOLE 6SS	X	51	110.
32.5							
	OTES: MEASURING POINT ELEVATIONS MAY CHANGE	REFER TO	CURRENT ELEVATION T	ARI E	1	<u> </u>	L

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

(CL-05) Page 2 of 2

PROJECT NAME: EVERGREEN MANOR SITE

PROJECT NUMBER: 9234 CLIENT: ECOLAB, INC.

LOCATION: ROSCOE, ILLINOIS

HOLE DESIGNATION: MW-3

DATE COMPLETED: DECEMBER 3, 1996

DRILLING METHOD: 4 %" HSA CRA SUPERVISOR: P. KLICK

DEPTH t. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft. AMSL	MONITOR INSTALLATION	-	5	AMPLE	
. 865		TI. AMSL		NUMBER	STATE	'N' VALUE	PIC (ppi
37.5	SP-SAND, trace fine gravel, fine grained, dense, light brown, moist		2" Ø STAINLESS STEEL PIPE BENTONITE CHIPS		X	39	135.
40.0	- medium dense, saturated		SAND PACK	855	X	18	45.
42.5			WELL SCREEN 8" Ø BOREHOLE				i i
45.0	END OF HOLE @ 45.5ft BGS Notes: NR - no recovery	_	SCREEN DETAILS				
47.5			Screened Interval: 40 to 45t BGS Length: 5.07t Diameter: 2" Siot Size: #10				
50.0			Material: Stainless Steel Sand Pack: 38 to 45.51t BGS Material: #30 Sand				İ
52.5							
55.0							
57.5							
0.0							
52.5							
65.0							
67.5							

S

.

APPENDIX C

1996 CHAIN-OF-CUSTODY AND CERTIFICATES OF ANALYSES/GROUNDWATER SAMPLES

TABLE C.1

SAMPLE KEY EVERGREEN MANOR SITE ROSCOE, ILLINOIS

Location
Garage Well
Garage Well Duplicate
MW-1
MW-1 Duplicate
MW-2
MW-3
G114
G111
G103s
G102s

Mr. Steve Day CONESTOGA-ROVERS & ASSOC. 8615 West Bryn Mawr Avenue Chicago, IL 60631 11/25/1996

NET Job Number: 96.11222

IEPA Cert. No.: 100221 WDNR Cert. No.: 999447130 A2LA Cert. No.: 0453-01

Enclosed is the Analytical and Quality Control reports for the following samples submitted to Bartlett Division of NET, Inc. for analysis.

Project Description: Ecolab

Sample	Sample Description	Date	Date
Number		Taken	Received
385459 385460 385461	GW-112196-PK-001 GW-112196-PK-002 Trip Blank	11/21/1996 11/21/1996	11/22/1996 11/22/1996 11/22/1996

Sample analysis in support of the project referenced above has been completed and results are presented on the following pages. These results apply only to the samples analyzed. Reproduction of this report only in whole is permitted. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Procedures used follow NET Standard Operating Procedures which reference the methods listed on your report. Should you have questions regarding procedures or results, please do not hesitate to call. NET has been pleased to provide these analytical services for you.

This Quality Control report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

Approved by:

Mary Pearson Project Manager

ANALYTICAL REPORT

Mr. Steve Day CONESTOGA-ROVERS & ASSOC. 8615 West Bryn Mawr Avenue Chicago, IL 60631

11/25/1996

Sample No. :

385459

NET Job No.:

96.11222

Sample Description:

GW-112196-PK-001

Ecolab

Date Taken: Time Taken: 08:15

11/21/1996

Date Received:

11/22/1996

Time Received: 12:00

Analyte	Result	Plag	Units	Reporting Limit	Date Analyzed	Analyst Initials	Analytical Method
SDWA VOLATILE COMPOUNDS 524	.2						
Benzene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Vinyl Chloride	<0.5		ug/L	0.5	11/25/1996	11 j	524.2 (6)
Carbon Tetrachloride	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
1,2-Dichloroethane	<0.5		ug/L	0.5	11/25/1996	115	524.2 (6)
Trichloroethylens	<0.5		ug/L	0.5	11/25/1996	115	524.2 (6)
1,1-Dichloroethylene	<0.5		ug/L	0.5	11/25/1996	11j	524 2 (6)
1,1,1-Trichloroethane	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
p-Dichlorobenzene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Dichlorobromomethane	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Bromoform	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Chloroform	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Chlorodibromomethane	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Surr: 4-Bromofluorobenzene	101.0		*	80-120	11/25/1996	11j	524.2 (6)
Surr: d4-1,2-Dichlorobenzen	e 100.0		ł	80-120	11/25/1996	11j	524.2 (6)
Bromobenzene	<1.0		ug/L	1.0	11/25/1996	11)	524.2 (6)
Bromomethane	<2.0		ug/L	2.0	11/25/1996	115	524.2 (6)
Chlorobenzene	<0.5		ug/L	0.5	11/25/1996	115	524.2 (6)
Chloroethane	<2.0		ug/L	2.0	11/25/1996	115	524.2 (6)
Chloromethane	<2.0		ug/L	2.0	11/25/1996	11j	524.2 (6)
o-Chlorotoluene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
p-Chlorotoluene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
Dibromomethane	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
m-Dichlorobenzene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
o-Dichlorobenzene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)

ANALYTICAL REPORT

Mr. Steve Day CONESTOGA-ROVERS & ASSOC. 8615 West Bryn Mawr Avenue Chicago, IL 60631 11/25/1996

Sample No. : 385459

NET Job No.: 96.11222

Sample Description:

Time Taken:

GW-112196-PK-001

Ecolab

Date Taken: 11/21/1996

08:15

Date Received: 11/22/1996

Time Received: 12:00

Analyst Analytical Units Reporting Date Analyte Result Plag Initials Method Limit Analyzed 11/25/1996 111 524.2 (6) ug/L 1.0 1,1-Dichloroethane <1.0 11/25/1996 111 524.2 (6) 0.5 cis-1,2-Dichloroethylene <0.5 ug/L 11/25/1996 111 524.2 (6) trans-1,2-Dichloroethylene <0.5 ug/L 0.5 524.2 (6) 11/25/1996 111 <0.5 ug/L 0.5 Dichloromethane 524.2 (6) ug/L 0.5 11/25/1996 115 1,2-Dichloropropane <0.5 524.2 (6) 1,3-Dichloropropane <1.0 ug/L 1.0 11/25/1996 111 524.2 (6) 2,2-Dichloropropane <1.0 ug/L 1.0 11/25/1996 111 524.2 (6) 1.0 11/25/1996 11j 1,1-Dichloropropene <1.0 ug/L 524.2 (6) 11/25/1996 11j ug/L 1,3-Dichloropropene <1.0 11/25/1996 111 524.2 (6) 0.5 <0.5 uq/L Ethylbenzene 11j 524.2 (6) 0.5 11/25/1996 <0.5 ug/L Styrene 524.2 (6) 1.0 11/25/1996 11j ug/L 1,1,1,2-Tetrachloroethane <1.0 11/25/1996 115 524.2 (6) 1.0 ug/L 1,1,2,2-tetrachloroethane <1.0 0.5 11/25/1996 11j 524.2 (6) ug/L Tetrachloroethylene <0.5 0.5 11/25/1996 115 524.2 (6) Toluene <0.5 ug/L 524.2 (6) 11/25/1996 11j ug/L 0.5 1,1,2-Trichloroethane <0.5 11/25/1996 115 524.2 (6) ug/L 1.0 1,2,3-Trichloropropane <1.0 11/25/1996 111 524.2 (6) 0.5 m&p-Xylene <0.5 ug/L 111 524.2 (6) 11/25/1996 <0.5 ug/L 0.5 o-Xylene 524.2 (6) 11j 11/25/1996 <10 ug/L 10 1,2-Dibromo-3-Chloropropane 115 524.2 (6) 11/25/1996 ug/L 10 Ethylenedibromide (EDB) <10 11j 524.2 (6) 1.0 11/25/1996 Bromochloromethane <1.0 ug/L 111 524.2 (6) <1.0 ug/L 1.0 11/25/1996 n-Butylbenzene 1.0 11/25/1996 11j 524.2 (6) <1.0 ug/L sec-Butylbenzene <1.0 ug/L 1.0 11/25/1996 11j 524.2 (6) tert-Butylbenzene

ANALYTICAL REPORT

Mr. Steve Day CONESTOGA-ROVERS & ASSOC. 8615 West Bryn Mawr Avenue Chicago, IL 60631 11/25/1996

Sample No. : 385459

NET Job No.: 96.11222

Sample Description:

GW-112196-PK-001

Ecolab

Date Taken: 11/21/1996

Time Taken: 08:15

Date Received: 11/22/1996

Time Received: 12:00

Analyte	Result	Flag	Units	Reporting Limit	Date Analyzed	Analyst Initials	Analytical Method	
Dichlorodifluoromethane	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)	
Fluorotrichloromethane	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)	
Hexachlorobutadiene	<2.0		ug/L	2.0	11/25/1996	11 j	524.2 (6)	
Isopropylbenzene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)	
p-Isopropyltoluene	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)	
Naphthalene	<1.0		ug/L	1.0	11/25/1996	115	524.2 (6)	
n-Propylbenzene	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)	
1,2,3-Trichlorobenzene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)	
1,2,4-Trichlorobenzene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)	
1,2,4-Trimethylbenzene	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)	
1,3,5-Trimethylbenzene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)	

ANALYTICAL REPORT

Mr. Steve Day CONESTOGA-ROVERS & ASSOC. 8615 West Bryn Mawr Avenue Chicago, IL 60631 11/25/1996

Sample No. : 385460

NET Job No.: 96.11222

Sample Description:

GW-112196-PK-002

Ecolab

Date Taken: 11/21/1996

Date Received: 11/22/1996

Time Taken: 08:20 Time Received: 12:00

Analyte	Result	Plag	Units	Reporting Limit	Date Analyzed	Analyst Initials	Analytical Method
SDWA VOLATILE COMPOUNDS 524.2							
Benzene	<0.5		ug/L	0.5	11/25/1996	11;	524.2 (6)
Vinyl Chloride	<0.5		ug/L	0.5	11/25/1996	11;	524.2 (6)
Carbon Tetrachloride	<0.5		ug/L	0.5	11/25/1996	11 j	524.2 (6)
1,2-Dichloroethane	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Trichloroethylene	<0.5		ug/L	0.5	11/25/1996	115	524.2 (6)
1,1-Dichloroethylene	<0.5		ug/L	0.5	11/25/1996	115	524.2 (6)
1,1,1-Trichloroethane	<0.5		ug/L	C.5	11/25/1996	11;	524.2 (6)
p-Dichlorobenzene	<0.5		ug/L	0.5	11/25/1996	11 j	524.2 (6)
Dichlorobromomethane	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Bromoform	<0.5		ug/L	0.5	11/25/1996	11;	524.2 (6)
Chloroform	<0.5		ug/L	0.5	11/25/1996	115	524.2 (6)
Chlorodibromomethane	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Surr: 4-Bromofluorobenzene	102.0		*	80-120	11/25/1996	11 j	524.2 (6)
Surr: d4-1,2-Dichlorobenzene	103.0		*	80-120	11/25/1996	11 j	524.2 (6)
Bromobenzene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
Bromomethane	<2.0		ug/L	2.0	11/25/1996	11j	524.2 (6)
Chlorobenzene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Chloroethane	<2.0		ug/L	2.0	11/25/1996	11j	524.2 (6)
Chloromethane	<2.0		ug/L	2.0	11/25/1996	11 j	524.2 (6)
o-Chlorotoluene	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)
p-Chlorotoluene	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)
Dibromomethane	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)
m-Dichlorobenzene	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)
o-Dichlorobenzene	<0.5		ug/L	0.5	11/25/1996	11 j	524.2 (6)

ANALYTICAL REPORT

Mr. Steve Day CONESTOGA-ROVERS & ASSOC. 8615 West Bryn Mawr Avenue Chicago, IL 60631 11/25/1996

Sample No. : 385460

NET Job No.: 96.11222

Sample Description:

GW-112196-PK-002

Ecolab

Date Taken: 11/21/1996

Time Taken: 08:20

Date Received: 11/22/1996

Time Received: 12:00

Analyte	Result	Flag	Units	Reporting Limit	Date Analyzed	Analyst Initials	Analytical Method
1,1-Dichloroethane	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
cis-1,2-Dichloroethylene	<0.5		ug/L	0.5	11/25/1996	115	524.2 (6)
trans-1,2-Dichloroethylene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Dichloromethane	<0.5		ug/L	0.5	11/25/1996	11 j	524.2 (6)
1,2-Dichloropropane	<0.5		ug/L	0.5	11/25/1996	11 j	524.2 (6)
1,3-Dichloropropane	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)
2,2-Dichloropropane	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)
1,1-Dichloropropene	<1.0		ug/L	1.0	11/25/1996	115	524.2 (6)
1.3-Dichloropropene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
Ethylbenzene	<0.5		ug/L	0.5	11/25/1996	115	524.2 (6)
Styrene	<0.5		ug/L	0.5	11/25/1996	11 j	524.2 (6)
1.1.1.2-Tetrachloroethane	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)
1,1,2,2-tetrachloroethane	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
Tetrachloroethylene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Toluene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
1,1,2-Trichloroethane	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
1,2,3-Trichloropropane	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
m&p-Xylene	<0.5		ug/L	0.5	11/25/1996	11 j	524.2 (6)
o-Xylene	<0.5		ug/L	0.5	11/25/1996	11 j	524.2 (6)
1,2-Dibromo-3-Chloropropane	<10		ug/L	10	11/25/1996	11j	524.2 (6)
Ethylenedibromide (EDB)	<10		ug/L	10	11/25/1996	11j	524.2 (6)
Bromochloromethane	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)
n-Butylbenzene	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)
sec-Butylbenzene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
tert-Butylbenzene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)

Bartlett Division 850 West Bartlett Rd. Bartlett, IL 60103

Tel: (630) 289-3100 Fax: (630) 289-5445

ANALYTICAL REPORT

Mr. Steve Day CONESTOGA-ROVERS & ASSOC. 8615 West Bryn Mawr Avenue 11/25/1996

Sample No. :

385460

Chicago, IL 60631

NET Job No.:

96.11222

Sample Description:

GW-112196-PK-002

Ecolab

Date Taken:

11/21/1996

Time Taken: 08:20

Date Received:

11/22/1996

Time Received: 12:00

Analyte	Result	Plag	Units	Reporting Limit	Date Analyzed	Analyst Initials	Analytical Method	
Dichlorodifluoromethane	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)	
Fluorotrichloromethane	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)	
Hexachlorobutadiene	<2.0		ug/L	2.0	11/25/1996	11j	524.2 (6)	
Isopropylbenzene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)	
p-Isopropyltoluene	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)	
Naphthalene	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)	
n-Propylbenzene	<1.0	•	ug/L	1.0	11/25/1996	11 j	524.2 (6)	
1,2,3-Trichlorobenzene	<1.0		ug/L	1.0	11/25/1996	11 j	524,2 (6)	
1,2,4-Trichlorobenzene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)	
1,2,4-Trimethylbenzene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)	
1,3,5-Trimethylbenzene	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)	

ANALYTICAL REPORT

Mr. Steve Day CONESTOGA-ROVERS & ASSOC. 8615 West Bryn Mawr Avenue Chicago, IL 60631 11/25/1996

Sample No. : 385461

NET Job No.: 96.11222

Sample Description:

Trip Blank

Ecolab

Date Taken: Time Taken:

Date Received: 11/22, Time Received: 12:00 11/22/1996

Analyte	Result	Flag	Units	Reporting Limit	Date Analyzed	Analyst Initials	Analytical Method
SDWA VOLATILE COMPOUNDS 524.2							
Benzene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Vinyl Chloride	<0.5		ug/L	0.5	11/25/1996	11 j	524.2 (6)
Carbon Tetrachloride	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
1,2-Dichloroethane	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Trichloroethylene	<0.5		ug/L	0.5	11/25/1996	11 j	524.2 (6)
1,1-Dichloroethylene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
1,1,1-Trichloroethane	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
p-Dichlorobenzene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Dichlorobromomethane	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Bromoform	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Chloroform	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Chlorodibromomethane	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Surr: 4-Bromofluorobenzene	101.0		*	80-120	11/25/1996	115	524.2 (6)
Surr: d4-1,2-Dichlorobenzene	101.0		*	80-120	11/25/1996	11j	524.2 (6)
Bromobenzene	<1.0		ug/L	1.0	11/25/1996	115	524.2 (6)
Bromomethane	<2.0		ug/L	2.0	11/25/1996	115	524.2 (6)
Chlorobenzene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Chloroethane	<2.0		ug/L	2.0	11/25/1996	115	524.2 (6)
Chloromethane	<2.0		ug/L	2.0	11/25/1996	11 j	524.2 (6)
o-Chlorotoluene	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)
p-Chlorotoluene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
Dibromomethane	<1.0		ug/L	1.0	11/25/1996	115	524.2 (6)
m-Dichlorobenzene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
o-Dichlorobenzene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)

ANALYTICAL REPORT

Mr. Steve Day CONESTOGA-ROVERS & ASSOC. 8615 West Bryn Mawr Avenue Chicago, IL 60631 11/25/1996

Sample No. : 385461

NET Job No.: 96.11222

Sample Description:

Trip Blank

Ecolab

Date Taken: Time Taken: Date Received: 11/22/1996

Time Received: 12:00

Analyte	Result	Flag	Units	Reporting Limit	Date Analyzed	Analyst Initials	Analytical Method
1.1-Dichloroethane	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
cis-1,2-Dichloroethylene	<0.5		ug/L	0.5	11/25/1996	11 j	524.2 (6)
trans-1,2-Dichloroethylene	<0.5		ug/L	0.5	11/25/1996	113	524.2 (6)
Dichloromethane	<0.5		uq/L	0.5	11/25/1996	11 j	524.2 (6)
1,2-Dichloropropane	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
1.3-Dichloropropane	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)
2,2-Dichloropropane	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
1.1-Dichloropropene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
1,3-Dichloropropene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
Ethylbenzene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Styrene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
1.1.1.2-Tetrachloroethane	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
1,1,2,2-tetrachloroethane	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
Tetrachloroethylene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
Toluene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
1,1,2-Trichloroethane	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
1,2,3-Trichloropropane	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
m&p-Xylene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
o-Xylene	<0.5		ug/L	0.5	11/25/1996	11j	524.2 (6)
1.2-Dibromo-3-Chloropropane	<10		ug/L	10	11/25/1996	11 j	524.2 (6)
Ethylenedibromide (EDB)	<10		ug/L	10	11/25/1996	115	524.2 (6)
Bromochloromethane	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
n-Butylbenzene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
sec-Butylbenzene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
tert-Butylbenzene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)
•							

Bartlett Division 850 West Bartlett Rd. Bartlett, IL 60103

Tel: (630) 289-3100 Fax: (630) 289-5445

ANALYTICAL REPORT

Mr. Steve Day CONESTOGA-ROVERS & ASSOC. 8615 West Bryn Mawr Avenue Chicago, IL 60631

11/25/1996

Sample No. : 385461

NET Job No.: 96.11222

Sample Description:

Trip Blank

Ecolab

Date Taken: Time Taken:

11/22/1996 12:00 Date Received:

Time Received:

Analyte	Result Flag		Units	Reporting Limit	Date Analyzed	Analyst Initials	Analytical Method	
Dichlorodifluoromethane	<1.0		ug/L	1.0	11/25/1996	11 j	524.2 (6)	
Fluorotrichloromethane	<1.0		ug/L	1.0	11/25/1996	115	524.2 (6)	
Hexachlorobutadiene	<2.0		ug/L	2.0	11/25/1996	115	524.2 (6)	
Isopropylbenzene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)	
p-Isopropyltoluene	<1.0		ug/L	1.0	11/25/1996	.115	524.2 (6)	
Naphthalene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)	
n-Propylbenzene	<1.0		ug/L	1.0	11/25/1996	115	524.2 (6)	
1,2,3-Trichlorobenzene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)	
1,2,4-Trichlorobenzene	<0.5		ug/L	0.5	11/25/1996	11 j	524.2 (6)	
1,2,4-Trimethylbenzene	<1.0		ug/L	1.0	11/25/1996	115	524.2 (6)	
1,3,5-Trimethylbenzene	<1.0		ug/L	1.0	11/25/1996	11j	524.2 (6)	

NET Midwest, Bartlett Division

KEY TO ABBREVIATIONS and METHOD REFERENCES

Less than; Mens appearing in the results column indicates the analyte was not detected at or above the reported value.		
aqueous samples. Can also be expressed as parts per million (ppm). wg/g : Concentration in units of micrograms of analyte per gram of sample. Measurement used for non-aqueous samples. Can also be expressed as parts per million (ppm) or mg/kg. wg/L : Concentration in units of micrograms of analyte per liter of sample. Measurement used for aqueous samples. Can also be expressed as parts per billion (ppm). wg/kg : Concentration in units of micrograms of analyte per kilogram of sample. Measurement used for non-aqueous samples. Can also be expressed as parts per billion (ppm). TCL9 : These initials appearing in front of an analyte name indicate that the Toxicity Characteristic Leaching Procedure (TCLP) was performed for this test. Burr: : These initials are the abbreviation for surrogate. Surrogates are compounds that are chemically similar to the compounds of interest. They are part of the method quality control requirements b : Percent; To convert ppm to %, divide the result by 10,000. To convert % to ppm, multiply the result by 10,000. ICP : Indicates analysis was performed using Inductively Coupled Plasma Spectroscopy. AA : Indicates analysis was performed using Atomic Absorption Spectroscopy. PQL : Practical Quantication Limit; the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. Method References (1)	<	
non-aqueous samples. Can also be expressed as parts per allition (ppm) or mg/Kg. ug/L : Concentration in units of micrograms of analyte per liter of sample. Measurement used for aqueous samples. Can also be expressed as parts per billion (ppb). ug/Kg : Concentration in units of micrograms of analyte per kilogram of sample. Measurement used for non-aqueous samples. Can also be expressed as parts per billion (ppb). TCL9 : These initials appearing in front of an analyte name indicate that the Toxicity Characteristic Leaching Procedure (TCLP) was performed for this test. Burr: : These initials are the abbreviation for surrogate. Surrogates are compounds that are chemically similar to the compounds of interest. They are part of the method quality control requirements is indicated by the compounds of interest. They are part of the method quality control requirements to convert to pometry ppm to to the divide the result by 10,000. ICP : Indicates analysis was performed using Inductively Coupled Plasma Spectroscopy. AA : Indicates analysis was performed using Graphite Furnace Atomic Absorption Spectroscopy. PQL : Practical Quantitation Limit; the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. Method References (1) Methods 1000 through 499; see "Methods for Evaluating Solid Maste", USEPA SM-846, 3rd Edition, 1986. (2) ASTM "American Society for Testing Materials" (3) Methods 100 through 499; see "Methods for Chemical Analysis of Mater and Mastes", USEPA, 600/4-79-020, Rev. 1983. (4) See "Standard Methods for the Examination of Mater and Mastewater", 17th Ed. APPA, 1989. (5) Methods 600 through 525; see "Methods for the Determination of Organic Compounds in Drinking Mater," USEPA SMO/4-88/033, Rev. 1988. (7) See "Methods for the Determination of Metals in Environmental Samples", Supplement I	mg/L	
aqueous samples. Can also be expressed as parts per billion (ppb). ug/Kg : Concentration in units of micrograms of analyte per kilogram of sample. Measurement used for mon-aqueous samples. Can also be expressed as parts per billion (ppb). TCLP : These initials appearing in front of an analyte neme indicate that the Toxicity Characteristic Lesching Procedure (TCLP) was performed for this test. Surr; : These initials are the abbreviation for surrogate. Surrogates are compounds that are chemically similar to the compounds of interest. They are part of the method quality control requirements is in the compounds of interest. They are part of the method quality control requirements for convert to ppm, multiply the result by 10,000. To convert to ppm, multiply the result by 10,000. ICP : Indicates analysis was performed using Inductively Coupled Plasma Spectroscopy. AA : Indicates analysis was performed using Atomic Absorption Spectroscopy. PQL : Practical Quantitation Limit; the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. Method References (1) Rethods 1000 through 9999; see "Test Methods for Evaluating Solid Maste", USEPA SW-846, 3rd Edition, 1986. (2) ASTM *American Society for Testing Materials* (3) Methods 100 through 499; see "Methods for Chemical Analysis of Mater and Mastees", USEPA, 600/4-79-020, Rev. 1983. (4) See "Standard Methods for the Examination of Nater and Mastewater", 17th Ed, APHA, 1989. Methods 500 through 625; see "Quidelines Establishing Test Procedures for the Analysis of Pollutants", USEPA Federal Register Vol. 49 No. 209, October 1984. (6) Methods 500 through 599; see "Methods for the Determination of Organic Compounds in Drinking Mater," USEPA 600/4-89/039, Rev. 1988.	ug/g	
non-aqueous samples. Can also be expressed as parts per billion (ppb). TCLF : These initials appearing in front of an analyte name indicate that the Toxicity Characteristic Leaching Procedure (TCLF) was performed for this test. Burr: : These initials are the abbreviation for surrogate. Surrogates are compounds that are chemically similar to the compounds of interest. They are part of the method quality control requirements : Percent: To convert ppm to % divide the result by 10,000. To convert % to ppm, multiply the result by 10,000. ICP : Indicates analysis was performed using Inductively Coupled Plasma Spectroscopy. AA : Indicates analysis was performed using Atomic Absorption Spectroscopy. GPAA : Indicates analysis was performed using Graphite Furnace Atomic Absorption Spectroscopy. PQL : Practical Quantitation Limit; the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. Method References (1) Methods 1000 through 3939; see "Test Methods for Evaluating Solid Waste", USEPA SM-846, 3rd Edition, 1986. (2) ASTM "American Society for Testing Materials" (3) Methods 100 through 499; see "Methods for Chemical Analysis of Water and Wastes", USEPA, 600/4-79-020, Rev. 1981. (4) See "Standard Methods for the Examination of Water and Mastewater", 17th Ed, APHA, 1989. Methods 500 through 599; see "Methods for the Determination of Organic Compounds in Drinking Mater," USEPA 600/4-88/019, Rev. 1988. (7) See "Methods for the Determination of Metals in Environmental Samples", Supplement I	ug/L	
Leaching Procedure (TCLP) was performed for this test. Surr: : These initials are the abbreviation for surrogate. Surrogates are compounds that are chemically similar to the compounds of interest. They are part of the method quality control requirements. * : Percent; To convert ppm to **, divide the result by 10,000. To convert ** to ppm, multiply the result by 10,000. ICP : Indicates analysis was performed using Inductively Coupled Plasma Spectroscopy. AA : Indicates analysis was performed using Atomic Absorption Spectroscopy. GPAA : Indicates analysis was performed using Graphite Furnace Atomic Absorption Spectroscopy. POL : Practical Quantitation Limit; the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. Method References (1)	ug/ K g	
similar to the compounds of interest. They are part of the method quality control requirements : Percent; To convert ppm to 1, divide the result by 10,000. To convert 1 to ppm, multiply the result by 10,000. ICP : Indicates analysis was performed using Inductively Coupled Plasma Spectroscopy. AA : Indicates analysis was performed using Atomic Absorption Spectroscopy. GPAA : Indicates analysis was performed using Graphite Purnace Atomic Absorption Spectroscopy. PQL : Practical Quantitation Limit; the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. Method References (1)	TCLP	• • • • • • • • • • • • • • • • • • • •
To convert % to ppm, multiply the result by 10,000. ICP : Indicates analysis was performed using Inductively Coupled Plasma Spectroscopy. AA : Indicates analysis was performed using Atomic Absorption Spectroscopy. GFAA : Indicates analysis was performed using Graphite Furnace Atomic Absorption Spectroscopy. PQL : Practical Quantitation Limit; the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. Method References (1)	Surr:	
: Indicates analysis was performed using Atomic Absorption Spectroscopy. GPAA: Indicates analysis was performed using Graphite Furnace Atomic Absorption Spectroscopy. PQL: Practical Quantitation Limit; the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. Method References (1) Methods 1000 through 9999: see "Test Methods for Evaluating Solid Waste", USEPA SW-846, 3rd Edition, 1986. (2) ASTM "American Society for Testing Materials" (3) Methods 100 through 499: see "Methods for Chemical Analysis of Water and Wastes", USEPA, 600/4-79-020, Rev. 1983. (4) See "Standard Methods for the Examination of Water and Wastewater", 17th Ed. APHA, 1989. (5) Methods 600 through 625: see "Guidelines Establishing Test Procedures for the Analysis of Pollutants", USEPA Federal Register Vol. 49 No. 209, October 1984. (6) Methods 500 through 599: see "Methods for the Determination of Organic Compounds in Drinking Water," USEPA 600/4-88/039, Rev. 1988. (7) See "Methods for the Determination of Metals in Environmental Samples", Supplement I	٠	
GPAA : Indicates analysis was performed using Graphite Furnace Atomic Absorption Spectroscopy. PQL : Practical Quantitation Limit; the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. Method References (1)	ICP	: Indicates analysis was performed using Inductively Coupled Plasma Spectroscopy.
PQL : Practical Quantitation Limit; the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. Method References (1)	AA	: Indicates analysis was performed using Atomic Absorption Spectroscopy.
Method References (1) Methods 1000 through 9999: see "Test Methods for Evaluating Solid Waste", USEPA SW-846, 3rd Edition, 1986. (2) ASTM "American Society for Testing Materials" (3) Methods 100 through 499: see "Methods for Chemical Analysis of Water and Wastes", USEPA, 600/4-79-020, Rev. 1983. (4) See "Standard Methods for the Examination of Water and Mastewater", 17th Ed, APHA, 1989. (5) Methods 600 through 625: see "Guidelines Establishing Test Procedures for the Analysis of Pollutants", USEPA Federal Register Vol. 49 No. 209, October 1984. (6) Methods 500 through 599: see "Methods for the Determination of Organic Compounds in Drinking Water," USEPA 600/4-88/039, Rev. 1988. (7) See "Methods for the Determination of Metals in Environmental Samples", Supplement I	GFAA	: Indicates analysis was performed using Graphite Furnace Atomic Absorption Spectroscopy.
(1) Methods 1000 through 9999: see "Test Methods for Evaluating Solid Waste", USEPA SW-846, 3rd Edition, 1986. (2) ASTM "American Society for Testing Materials" (3) Methods 100 through 499: see "Methods for Chemical Analysis of Water and Wastes", USEPA, 600/4-79-020, Rev. 1983. (4) See "Standard Methods for the Examination of Water and Wastewater", 17th Ed, APHA, 1989. (5) Methods 600 through 625: see "Guidelines Establishing Test Procedures for the Analysis of Pollutants", USEPA Federal Register Vol. 49 No. 209, October 1984. (6) Methods 500 through 599: see "Methods for the Determination of Organic Compounds in Drinking Water," USEPA 600/4-88/039, Rev. 1988. (7) See "Methods for the Determination of Metals in Environmental Samples", Supplement I	PQL	· · · · · · · · · · · · · · · · · · ·
ASTM "American Society for Testing Materials" (3) Methods 100 through 499: see "Methods for Chemical Analysis of Water and Wastes", USEPA, 600/4-79-020, Rev. 1983. (4) See "Standard Methods for the Examination of Water and Wastewater", 17th Ed, APHA, 1989. (5) Methods 600 through 625: see "Guidelines Establishing Test Procedures for the Analysis of Pollutants", USEPA Federal Register Vol. 49 No. 209, October 1984. (6) Methods 500 through 599: see "Methods for the Determination of Organic Compounds in Drinking Water," USEPA 600/4-88/039, Rev. 1988. (7) See "Methods for the Determination of Metals in Environmental Samples", Supplement I	Method Refe	rences
(3) Methods 100 through 499: see "Methods for Chemical Analysis of Water and Wastes", USEPA, 600/4-79-020, Rev. 1983. (4) See "Standard Methods for the Examination of Water and Wastewater", 17th Ed, APHA, 1989. (5) Methods 600 through 625: see "Guidelines Establishing Test Procedures for the Analysis of Pollutants", USEPA Federal Register Vol. 49 No. 209, October 1984. (6) Methods 500 through 599: see "Methods for the Determination of Organic Compounds in Drinking Water," USEPA 600/4-88/039, Rev. 1988. (7) See "Methods for the Determination of Metals in Environmental Samples", Supplement I	(1)	
600/4-79-020, Rev. 1983. (4) See "Standard Methods for the Examination of Water and Wastewater", 17th Ed, APHA, 1989. (5) Methods 600 through 625: see "Guidelines Establishing Test Procedures for the Analysis of Pollutants", USEPA Federal Register Vol. 49 No. 209, October 1984. (6) Methods 500 through 599: see "Methods for the Determination of Organic Compounds in Drinking Water," USEPA 600/4-88/039, Rev. 1988. (7) See "Methods for the Determination of Metals in Environmental Samples", Supplement I	(2)	ASTM "American Society for Testing Materials"
(5) Methods 600 through 625: see "Guidelines Establishing Test Procedures for the Analysis of Pollutants", USEPA Federal Register Vol. 49 No. 209, October 1984. (6) Methods 500 through 599: see "Methods for the Determination of Organic Compounds in Drinking Water," USEPA 600/4-88/039, Rev. 1988. (7) See "Methods for the Determination of Metals in Environmental Samples", Supplement I	(3)	
of Pollutants*, USEPA Federal Register Vol. 49 No. 209, October 1984. (6) Methods 500 through 599: see "Methods for the Determination of Organic Compounds in Drinking Water," USEPA 600/4-88/039, Rev. 1988. (7) See "Methods for the Determination of Metals in Environmental Samples", Supplement I	(4)	See "Standard Methods for the Examination of Water and Wastewater", 17th Ed. APHA, 1989.
Drinking Water, " USEPA 600/4-88/039, Rev. 1988. (7) See "Methods for the Determination of Metals in Environmental Samples", Supplement I	(5)	
,	(6)	
	(7)	· · · · · · · · · · · · · · · · · · ·

(8) See "Standard Methods for the Examination of Water and Wastewater", 18th Ed., APHA, 1992.

		سند سرجي والمسند			 			,						
CRA CONESTOGA	-ROV	ERS & ASSOC	CIATES	SHIPPED TO (L		y Na	me):	Λ	VE	7				•
8615 W. B	yn M	awr Avenue	.\				000	FOT	NIANA		_			
CHAIN (8615 W. Bryn Mawr Avenue Chicago, Illinois 60631 (773)380-9933 REFERENCE N CHAIN OF CUSTODY RECORD 9239						PROJ	ECI	NAM)	<u> </u>		ola	Ь	
SAMPLER'S Pat Klick PRINTED Pat Klick SIGNATURE: Pat Klick						AINERS	PARA	METE	RS					REMARKS
SEQ. DATE	TIME		SAMPLE No	•	SAMPLE MATRIX	CONT	1/0			//			//	Nemaritio
1 11/21/94	8:15	Gw-11219	16- PK-C	20/	Custer	4		1						Results
2 11/21/96	8,20	GW-1121	96- PK-6	902		4	V							de
		Trip 7	Black		1	1								morday 11-25-96
						<u> </u>						4		11-25-96 8
					<u> </u>									
						<u> </u>				4_				
			/											
								$\top \nearrow$						
	† 							7						
	†						17	7						·
	//	1												
						1					1		1	
	1					7						X	1	
	1													
		<u> </u>	TOTAL N	NUMBER OF COM	TAINERS	9								
RELINQUISH	ED B	Y: Pat K	751	DATE: //-a	1-91 RE		ED BY	':			-			DATE:
$\mathbb{Q}_{}$			uca	TIME: 120										TIME:
RELINQUISH	IED B	Y:		DATE:			ED BY	':						DATE:
<u> </u>				TIME:	3									TIME:
RELINQUISH	IED B	Y:		DATE: TIME:	RI		ED BY	:						DATE:
3				IIME:										TIME:
METHOD O	F SHI	PMENT:	ed X			AIR	BILL							
White	–Fu	lly Executed	Copy	SAMPLE TEAM:								RATOR	RY B	BY:
Yellow		ceiving Labor	atory Copy	Klick			_	101	H	PU	WS	1_		- 2184
Pink		ipper Copy	1				DΔ1	E: 11	132/	Wa T	IMF•	12:	n	£ 10 T
Goldenrod		mpler Copy					_							_
1001(FORMS	S)-OCT	24/96-REV.0-(C)(F-01)				o	ooli	i to	up=	3.	16	m	ice

Technical Report for

Conestoga-Rovers & Associates

Ecolab

9234

Accutest Job Number: E16738

Report to:

Conestoga-Rovers & Associates 8615 West Bryn Mawr Avenue Chicago, IL 60631

ATTN: Steve Day

Total number of pages in report: 30

Vincent J. Pugliese President

New Jersey Certification No. 12129

Results relate only to the items tested.

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.

Sample Summary

Conestoga-Rovers & Associates

Date:

12/17/96

Job No:

E16738

Ecolab

Project No: 9234

Sample Number	Collected Date		Ву	Received	Matri Code		Client Sample ID
E16738-1	12/03/96	15:40	PK	12/05/96	AQ	Ground Water	GW-120396-PK-001
E16738-2	12/03/96	15:55	PK	12/05/96	AQ	Ground Water	GW-120396-PK-002
E16738-3	12/03/96	16:45	PK	12/05/96	AQ	Ground Water	GW-120396-PK-003
E16738-4	12/03/96	17:25	PK	12/05/96	AQ	Ground Water	GW-120396-PK-004
E16738-5	12/04/96	11:25	PK	12/05/96	AQ	Ground Water	GW-120496-PK-005
E16738-6	12/04/96	12:05	PK	12/05/96	AQ	Ground Water	GW-120496-PK-006
B16738-7	12/04/96	12:40	PK	12/05/96	AQ	Ground Water	GW-120496-PK-007
E16738-8	12/02/96	17:30	PK	12/05/96	AQ	Ground Water	TRIP BLANK
E16738-9	12/04/96	13:15	PK	12/05/96	AQ	Ground Water	GW-120496-PK-008

Page 1 of 2

Client Sample ID: GW-120396-PK-001

Lab Sample ID:

E16738-1

Matrix: Method: AQ - Ground Water

Project:

SW846 8260 Ecolab.

Date Sampled: 12/03/96 Date Received: 12/05/96

Percent Solids: n/a

File ID J9157.D DF Analyzed 12/05/96 1

By GTT Prep Date n/a

Prep Batch

Analytical Batch VJ474

n/a

Run #1 Run #2

VOA TCL List

CAS No.	Compound	Result	RDL	Units Q
67-64-1	Acetone	ND	5.0	ug/l
71-43-2	Benzene	ND	0.47	ug/i
75-27-4	Bromodichloromethane	ND	0.31	ug/l
75-25-2	Bromoform	ND	0.97	ug/i
108 -90 -7	Chlorobenzene	ND *	0.40	ug/l
75-00-3	Chloroethane	ND	1.5	ug/l
67 -6 6-3	Chloroform	ND	0.44	ug/l
75-15-0	Carbon disulfide	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	0.48	ug/l
75-34-3	1,1-Dichloroethane	ND	0.42	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.40	ug/l
107-06-2	1,2-Dichloroethane	ND	0.85	ug/l
78-87-5	1,2-Dichloropropane	ND	0.54	ug/l
124-48-1	Dibromochloromethane	ND	0.43	ug/l
156-69-4	cis-1,2-Dichloroethylene	ND	0.79	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	0.35	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.65	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	0.46	ug/l
100-41-4	Ethylbenzene	ND:	0.36	ug/l
591-78-6	2-Hexanone	ND	5.0	ug/l
108-10-1	4-Methyl-2-pentanone	ND	1.2	ug/l
74-83-9	Methyl bromide	ND***	0.92	ug/l
74-87-3	Methyl chloride	ND	0.77	ug/l
75-09-2	Methylene chloride	ND.	1.1	ug/l
78 -9 3-3	Methyl ethyl ketone	ND	1.0	ug/l
100-42-5	Styrene	ND	0.37	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.31	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.38	ug/l
79-00-5	1,1,2-Trichloroethane	ND	0.70	ug/l
127-18-4	Tetrachloroethylene	ND:	0.60	ug/l
108-88-3	Toluene	ND	0.36	ug/l
79-01-6	Trichloroethylene	ND	0.26	ug/l
75-01-4	Vinyl chloride	ND:	1.3	ug/l
1330-20-7	Xylene (total)	ND	0.62	ug/l

2

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

Page 2 of 2

Client Sample ID: GW-120396-PK-001

Lab Sample ID:

E16738-1

Matrix:

AQ - Ground Water

Method: Project:

SW846 8260

Ecolab

Date Sampled: 12/03/96

Date Received: 12/05/96 Percent Solids: n/a

Analytical Batch Prep Batch

Run #1 Run #2 File ID J9157.D DF

Analyzed 12/05/96

By GTT **Prep Date** n/a

VJ474 n/a

VOA TCL List

Run#2 Run#1 Limits CAS No. Surrogate Recoveries 1868-53-7 Dibromofluoromethane 86-118%

2037-26-5 Toluene-D8 4-Bromofluorobenzene 460-00-4

103 %

88-110% 86-115%

Page 1 of 2

Client Sample ID: GW-120396-PK-002

Lab Sample ID:

E16738-2

Matrix: Method: Project:

AQ - Ground Water

SW846 8260 **Ecolab**

Date Sampled: 12/03/96 Date Received: 12/05/96

Percent Solids: n/a

Analytical Batch Prep Date

Run#1

File ID J9158.D DF 1

Ву Analyzed 12/05/96 GTT

n/a

Prep Batch n/a

VJ474

Run #2

VOA TCL List

CAS No.	Compound	Result	RDL	Units Q
67-64-1	Acetone	ND	5.0	ug/l
71-43-2	Benzene	ND	0.47	ug/l
75-27-4	Bromodichloromethane	ND	0.31	ug/l
75-25-2	Bromoform	ND	0.97	ug/l
108-90-7	Chlorobenzene	ND	0.40	ug/l
75-00-3	Chloroethane	ND	1.5	ug/l
67-66-3	Chloroform	ND	0.44	ug/l
75-15-0	Carbon disulfide	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	0.48	ug/l
75-34-3	1,1-Dichloroethane	ND	0.42	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.40	ug/l
107-06-2	1,2-Dichloroethane	ND	0.85	ug/l
78-87-5	1,2-Dichloropropane	ND	0.54	ug/l
124-48-1	Dibromochloromethane	ND	0.43	ug/l
156-69-4	cis-1,2-Dichloroethylene	ND"	0.79	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND.	0.35	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.65	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	0.46	ug/l
100-41-4	Ethylbenzene	ND	0.36	ug/l
591-78-6	2-Hexanone	ND	5.0	ug/l
108-10-1	4-Methyl-2-pentanone	ND	1.2	ug/l
74-83-9	Methyl bromide	ND	0.92	ug/l
74-87-3	Methyl chloride	ND	0.77	ug/l
75-09-2	Methylene chloride	ND	1.1	ug/l
78-93-3	Methyl ethyl ketone	ND	1.0	ug/l
100-42-5	Styrene	ND	0.37	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.31	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND.	0.38	ug/l
79-00-5	1,1,2-Trichloroethane	ND	0.70	ug/l
127-18-4	Tetrachloroethylene	ND	0.60	ug/l
108-88-3	Toluene	ND	0.36	ug/l
79-01-6	Trichloroethylene	ND:	0.26	ug/I
75-01-4	Vinyl chloride	ND	1.3	ug/l
1330-20-7	Xylene (total)	ND	0.62	ug/l

4

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

Page 2 of 2

Client Sample ID: GW-120396-PK-002

Lab Sample ID:

E16738-2

Ecolab

Matrix:

AQ - Ground Water

Method: Project:

SW846 8260

Date Received: 12/05/96

Date Sampled: 12/03/96

Percent Solids: n/a

Run #1 Run #2

460-00-4

File ID J9158.D DF

Analyzed By 12/05/96 GTT **Prep Date** n/a

Prep Batch n/a

Analytical Batch

VJ474

VOA TCL List

CAS No. Surrogate Recoveries

Run# 1

Run#2 Limits

1868-53-7 Dibromofluoromethane 2037-26-5

Toluene-D8

4-Bromofluorobenzene

86-118% 88-110% 86-115%

5

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

Page I of 2

Client Sample ID: GW-120396-PK-003

Lab Sample ID:

E16738-3

Matrix:

AQ - Ground Water

Method: Project:

SW846 8260

Ecolab

Date Sampled: 12/03/96 Date Received: 12/05/96

Percent Solids: n/a

Run #1

File ID J9159.D DF 1

By GTT

Analyzed

12/05/96

Prep Date n/a

Prep Batch

Analytical Batch

VJ474 n/a

Run #2

VOA TCL List

CAS No.	Compound	Result	RDL	Units Q
67-64-1	Acetone	ND	5.0	ug/i
71-43-2	Benzene	ND	0.47	ug/l
75-27-4	Bromodichloromethane	ND	0.31	ug/l
75-25-2	Bromoform	ND.	0.97	ug/l
108-90-7	Chlorobenzene	ND	0.40	ug/l
75-00-3	Chloroethane	ND	1.5	ug/l
67-66-3	Chloroform	ND	0.44	ug/l
75-15-0	Carbon disulfide	ND .	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	0.48	ug/l
75-34-3	1,1-Dichloroethane	ND	0.42	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.40	ug/l
107-06-2	1,2-Dichloroethane	ND	0.85	ug/l
78-87-5	1,2-Dichloropropane	ND	0.54	ug/I
124-48-1	Dibromochloromethane	ND	0.43	ug/l
156-69-4	cis-1,2-Dichloroethylene	ND	0.79	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	0.35	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND:	0.65	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND:	0.46	u g/l
100-41-4	Ethylbenzene	ND	0.36	ug/i
<i>5</i> 91-78-6	2-Hexanone	ND	5.0	ug/l
108-10-1	4-Methyl-2-pentanone	ND	1.2	ug/l
74-83-9	Methyl bromide	ND	0.92	ug/l
74-87-3	Methyl chloride	ND	0.77	ug/l
75-09-2	Methylene chloride	ND:	1.1	ug/l
78-93-3	Methyl ethyl ketone	ND	1.0	ug/l
100-42-5	Styrene	ND	0.37	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.31	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.38	ug/l
79-00-5	1,1,2-Trichloroethane	ND-	0.70	ug/l
127-18-4	Tetrachloroethylene	ND***	0.60	ug/l
108-88-3	Toluene	1.2	0.36	ug/l
79-01 -6	Trichloroethylene	ND	0.26	ug/i
75-01-4	Vinyl chloride	ND **	1.3	ug/l
1330-20-7	Xylene (total)	0.73	0.62	ug/l

6

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

Page 2 of 2

Client Sample ID: GW-120396-PK-003

Lab Sample ID: E16

E16738-3

Date Sampled: 12/03/96 Date Received: 12/05/96

Matrix: Method: AQ - Ground Water SW846 8260

Percent Solids: n/a

Project:

Ecolab

Prep Date Prep Batch Analytical Batch

VJ474

File ID DF Analyzed By Prep Date Prep Batch
Run #1 J9159.D 1 12/05/96 GTT n/a n/a

Run #2

CAS No.	Surrogate Recoveries	Run#1 Run#2	Limits
••••	Dibromofluoromethane Toluene-D8	89 % 102 %	86-118 % 88-110 %
460-00-4	4-Bromofluorobenzene	98%	86-115%

Page 1 of 2

Client Sample ID: GW-120396-PK-004

Lab Sample ID:

E16738-4

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260

Ecolab

Date Sampled: 12/03/96 Date Received: 12/05/96

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 J9160.D 1 12/05/96 GTT n/a n/a VJ474

Run #2

VOA TCL List

CAS No.	Compound	Result	RDL	Units Q
67-64-1	Acetone	ND	5.0	ug/l
71-43-2	Benzene	ND	0.47	ug/l
75-27-4	Bromodichloromethane	ND	0.31	ug/l
75-25-2	Bromoform	ND	0.97	ug/I
108 -9 0-7	Chlorobenzene	ND	0.40	ug/l
75-00-3	Chloroethane	ND	1.5	ug/l
67-66-3	Chloroform	ND	0.44	ug/l
75-15-0	Carbon disulfide	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	0.48	ug/l
75-34-3	1,1-Dichloroethane	ND	0.42	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.40	ug/l
107-06-2	1,2-Dichloroethane	ND	0.85	ug/l
78-87-5	1,2-Dichloropropane	ND	0.54	ug/l
124-48-1	Dibromochloromethane	ND	0.43	ug/l
156-69-4	cis-1,2-Dichloroethylene	ND	0.79	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	0.35	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.65	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND .	0.46	ug/l
100-41-4	Ethylbenzene	ND	0.36	ug/l
591-78-6	2-Hexanone	ND.	5.0	ug/l
108-10-1	4-Methyl-2-pentanone	ND	1.2	ug/l
74-83 -9	Methyl bromide	ND	0.92	u <i>g/</i> 1
74-87-3	Methyl chloride	ND	0.77	ug/l
75-09-2	Methylene chloride	ND	1.1	ug/l
78- 9 3-3	Methyl ethyl ketone	ND	1.0	ug/l
100-42-5	Styrene	ND	0.37	ug/I
71-55-6	1,1,1-Trichloroethane	ND	0.31	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.38	ug/l
79-00-5	1,1,2-Trichloroethane	ND	0.70	ug/l
127-18-4	Tetrachloroethylene	ND **	0.60	ug/l
108-88-3	Toluene	ND	0.36	ug/l
79-01-6	Trichloroethylene	ND	0.26	ug/l
75-01-4	Vinyl chloride	ND	1.3	ug/l
1330-20-7	Xylene (total)	ND	0.62	ug/l

8

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

Page 2 of 2

Client Sample ID: GW-120396-PK-004

Lab Sample ID:

E16738-4

Matrix: Method: AQ - Ground Water

DF

1

SW846 8260

Date Sampled: 12/03/96

Date Received: 12/05/96

Percent Solids: n/a

Project:

Ecolab

 ===	===	===
File	ID	

J9160.D

Analyzed 12/05/96

By Prep Date **GTT** n/a

Prep Batch

Analytical Batch

VJ474 n/a

Run #1 Run #2

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	88%		86-118%
2037-26-5	Toluene-D8	101%		88-110%
460-00-4	4-Bromofluorobenzene	98%		86-115 %

J9161.D

Report of Analysis

Page 1 of 2

Analytical Batch

VJ474

Client Sample ID: GW-120496-PK-005

Lab Sample ID:

E16738-5

Matrix:

AQ - Ground Water

Method: Project:

SW846 8260

Ecolab

Date Sampled: 12/04/96 Date Received: 12/05/96

Percent Solids: n/a

File ID DF Analyzed By **Prep Date Prep Batch**

GTT

n/a

12/05/96

Run #1 Run #2

VOA TCL List

CAS No.	Compound	Result	RDL	Units Q
67-64-1	Acetone	ND	5.0	ug/l
71-43-2	Benzene	ND	0.47	ug/l
75-27-4	Bromodichloromethane	ND	0.31	ug/l
75-25-2	Bromoform	ND	0.97	ug/l
108-90-7	Chlorobenzene	ND	0.40	ug/l
75-00-3	Chloroethane	ND	1.5	ug/I
67-66-3	Chloroform	ND	0.44	ug/l
75-15-0	Carbon disulfide	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	0.48	ug/l
75-34-3	1,1-Dichloroethane	ND	0.42	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.40	ug/l
107-06-2	1,2-Dichloroethane	ND.	0.85	ug/l
78-87-5	1,2-Dichloropropane	ND	0.54	ug/l
124-48-1	Dibromochloromethane	ND	0.43	ug/l
156-69-4	cis-1,2-Dichloroethylene	ND	0.79	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	0.35	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.65	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	0.46	ug/l
100-41-4	Ethylbenzene	ND	0.36	ug/l
591-78-6	2-Hexanone	ND	5.0	ug/I
108-10-1	4-Methyl-2-pentanone	ND	1.2	ug/l
74-83- 9	Methyl bromide	ND	0.92	ug/l
74-87-3	Methyl chloride	ND	0.77	ug/I
75-09-2	Methylene chloride	ND	1.1	ug/l
78- 9 3-3	Methyl ethyl ketone	ND	1.0	ug/l
100-42-5	Styrene	ND	0.37	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.31	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.38	ug/l
79-00-5	1,1,2-Trichloroethane	ND	0.70	ug/l
127-18-4	Tetrachloroethylene	ND	0.60	ug/l
108-88-3	Toluene	ND	0.36	ug/l
79-01 - 6	Trichloroethylene	ND	0.26	ug/l
75-01-4	Vinyl chloride	ND	1.3	ug/l
1330-20-7	Xylene (total)	ND	0.62	ug/l

10

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

Page 2 of 2

Client Sample ID: GW-120496-PK-005

Lab Sample ID: E16738-5

Matrix:

AQ - Ground Water

Method: Project:

SW846 8260

Ecolab

Date Sampled: 12/04/96 Date Received: 12/05/96

Percent Solids: n/a

File ID DF Analyzed By **Prep Date Prep Batch Analytical Batch** 12/05/96 GTT VJ474 Run #1 J9161.D 1 n/a n/a

Run #2

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7 2037-26-5	Dibromofluoromethane Toluene-D8	89 % 103 %		86-118 % 88-110 %
460-00-4	4-Bromofluorobenzene	94%		86-115%

Page I of 2

Client Sample ID: GW-120496-PK-006

Lab Sample ID:

E16738-6

Ecolab

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260

Date Sampled: 12/04/96 Date Received: 12/05/96

Percent Solids: n/a

Run #1

File ID J9162.D DF 1

Analyzed 12/05/96

Ву GTT n/a

Prep Date Prep Batch n/a

Analytical Batch

VJ474

Run #2

VOA TCL List

CAS No.	Compound	Result	RDL	Units Q
67-64-1	Acetone	ND	5.0	ug/l
71-43-2	Benzene	ND	0.47	ug/l
75-27-4	Bromodichloromethane	ND	0.31	ug/l
75-25-2	Bromoform	ND	0.97	ug/l
108-90-7	Chlorobenzene	ND	0.40	ug/l
75-00-3	Chloroethane	ND	1.5	ug/l
67-66-3	Chloroform	ND	0.44	ug/l
75-15-0	Carbon disulfide	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	0.48	ug/l
75-34-3	1,1-Dichloroethane	ND	0.42	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.40	ug/l
107-06-2	1,2-Dichloroethane	ND	0.85	ug/l
78-87-5	1,2-Dichloropropane	ND	0.54	ug/l
124-48-1	Dibromochloromethane	ND	0.43	ug/l
156-69-4	cis-1,2-Dichloroethylene	ND	0.79	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	0.35	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.65	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	0.46	ug/l
100-41-4	Ethylbenzene	ND	0.36	ug/l
591-78 - 6	2-Hexanone	ND	5.0	ug/l
108-10-1	4-Methyl-2-pentanone	ND	1.2	ug/l
74-83-9	Methyl bromide	ND	0.92	ug/l
74-87-3	Methyl chloride	ND	0.77	ug/l
75-09-2	Methylene chloride	ND	1.1	ug/l
78-93-3	Methyl ethyl ketone	ND	1.0	ug/l
100-42-5	Styrene	ND	0.37	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.31	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.38	ug/l
79-00-5	1,1,2-Trichloroethane	ND	0.70	ug/l
127-18-4	Tetrachloroethylene	ND	0.60	ug/l
108-88-3	Toluene	ND	0.36	ug/l
79-01-6	Trichloroethylene	ND	0.26	ug/l
75-01-4	Vinyl chloride	ND	1.3	ug/l
1330-20-7	Xylene (total)	ND	0.62	ug/l

12

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

Page 2 of 2

Client Sample ID: GW-120496-PK-006

Lab Sample ID:

E16738-6

Matrix:

AQ - Ground Water

Method: Project:

SW846 8260

Ecolab

Date Sampled: 12/04/96 Date Received: 12/05/96

Percent Solids: n/a

Run #1 -Run #2

File ID J9162.D DF 1

Analyzed By 12/05/96 GTT

Prep Date n/a

Prep Batch n/a

Analytical Batch

VJ474

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	92%		86-1189
2037-26-5	Toluene-D8	101%		88-110%
460-00-4	4-Bromofluorobenzene	97%		86-115%

B = Indicates that analyte is found in associated method blank

Page 1 of 2

Client Sample ID: GW-120496-PK-007

Lab Sample ID:

E16738-7

Matrix:

AQ - Ground Water

Method: Project:

SW846 8260

Ecolab

Date Sampled: 12/04/96

Date Received: 12/05/96

Percent Solids: n/a

Run #1 Run #2 File ID J9163.D DF Analyzed 1 12/06/96

By GTT **Prep Date** n/a

Prep Batch n/a

Analytical Batch

VJ474

VOA TCL List

CAS No.	Compound	Result	RDL	Units Q
67-64-1	Acetone	ND	5.0	ug/i
71-43-2	Benzene	ND	0.47	ug/l
75-27-4	Bromodichloromethane	ND	0.31	ug/l
75-25-2	Bromoform	ND.	0.97	ug/l
108-90-7	Chlorobenzene	ND	0.40	ug/l
75-00-3	Chloroethane	ND	1.5	ug/l
67-66-3	Chloroform	ND	0.44	ug/l
75-15-0	Carbon disulfide	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	0.48	ug/l
75-34-3	1,1-Dichloroethane	ND	0.42	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.40	ug/l
107-06-2	1,2-Dichloroethane	ND	0.85	ug/I
78-87-5	1,2-Dichloropropane	ND	0.54	ug/l
124-48-1	Dibromochloromethane	ND	0.43	ug/l
156-69-4	cis-1,2-Dichloroethylene	ND	0.79	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	0.35	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.65	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	0.46	ug/l
100-41-4	Ethylbenzene	ND	0.36	ug/l
591-78- 6	2-Hexanone	ND	5.0	ug/l
108-10-1	4-Methyl-2-pentanone	ND	1.2	ug/l
74-83- 9	Methyl bromide	ND	0.92	ug/l
74-87-3	Methyl chloride	ND	0.77	ug/l
75-09-2	Methylene chloride	ND	1.1	ug/l
78-93-3	Methyl ethyl ketone	ND	1.0	ug/l
100-42-5	Styrene	ND	0.37	ug/l
71-55-6	1,1,1-Trichloroethane	1.5	0.31	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.38	ug/l
79-00-5	1,1,2-Trichloroethane	ND	0.70	ug/l
127-18-4	Tetrachioroethylene	8.4	0.60	ug/l
108-88-3	Toluene	ND	0.36	ug/l
79-01-6	Trichloroethylene	ND	0.26	ug/l
75-01-4	Vinyl chloride	ND	1.3	ug/l
1330-20-7	Xylene (total)	ND	0.62	ug/l

14

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

File ID

J9163.D

Report of Analysis

By

GTT

Page 2 of 2

Client Sample ID: GW-120496-PK-007

Lab Sample ID:

E16738-7

Matrix:

AQ - Ground Water

DF

1

Method:

SW846 8260

Date Sampled: 12/04/96 Date Received: 12/05/96

Percent Solids: n/a

Project:

Ecolab

Prep Date Prep Batch **Analytical Batch**

n/a . n/a **VJ474**

Run #1 Run #2

VOA TCL List

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	90%		86-118%
2037-26-5	Toluene-D8	101 %		88-110%
460-00-4	4-Bromofluorobenzene	92%		86-115%

Analyzed

12/06/96

Page 1 of 2

Client Sample ID: TRIP BLANK

Ecolab

Lab Sample ID:

E16738-8

Matrix:

AQ - Ground Water

Analyzed

12/06/96

Date Sampled: 12/02/96 Date Received: 12/05/96

SW846 8260

DF

1

Method:

Percent Solids: n/a

Project:

File ID

By **GTT** Prep Date

Prep Batch

Analytical Batch

Run #1 J9164.D

Run #2

n/a **VJ474** n/a

VOA TCL List

CAS No.	Compound	Result	RDL	Units Q
67-64-1	Acetone	ND	5.0	ug/l
71-43-2	Benzene	ND	0.47	ug/l
75-27-4	Bromodichloromethane	ND	0.31	ug/l
75-25-2	Bromoform	ND	0.97	ug/l
108-90-7	Chlorobenzene	ND	0.40	ug/l
75-00-3	Chloroethane	ND	1.5	ug/l
67-66-3	Chloroform	ND	0.44	ug/I
75-15-0	Carbon disulfide	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	0.48	ug/l
75-34-3	1,1-Dichloroethane	ND	0.42	ug/l
75-35-4	1,1-Dichloroethylene	ND-	0.40	ug/l
107-06-2	1,2-Dichloroethane	ND	0.85	ug/l
78-87-5	1,2-Dichloropropane	ND	0.54	ug/l
124-48-1	Dibromochloromethane	ND	0.43	ug/l
156-69-4	cis-1,2-Dichloroethylene	ND	0.79	ug/I
10061-01-5	cis-1,3-Dichloropropene	ND	0.35	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.65	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	0.46	ug/l
100-41-4	Ethylbenzene	ND	0.36	ug/l
591-78-6	2-Hexanone	ND	5.0	ug/l
108-10-1	4-Methyl-2-pentanone	ND	1.2	ug/l
74-83-9	Methyl bromide	ND	0.92	ug/l
74-87-3	Methyl chloride	ND	0.77	ug/l
75-09-2	Methylene chloride	ND	1.1	ug/l
78-93-3	Methyl ethyl ketone	ND	1.0	ug/l
100-42-5	Styrene	ND	0.37	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.31	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.38	ug/l
79-00-5	1,1,2-Trichloroethane	ND	0.70	ug/l
127-18-4	Tetrachloroethylene	ND	0.60	ug/l
108-88-3	Toluene	ND	0.36	ug/l
79-01-6	Trichloroethylene	ND	0.26	ug/l
75-01-4	Vinyl chloride	ND	1.3	ug/l
1330-20-7	Xylene (total)	ND	0.62	ug/l

16

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

By

GTT

Page 2 of 2

Client Sample ID: TRIP BLANK

Lab Sample ID:

E16738-8

Matrix:

AQ - Ground Water

Method: Project:

SW846 8260

Ecolab

Date Sampled: 12/02/96

Date Received: 12/05/96

Percent Solids: n/a

Run #1

File ID J9164.D DF

Analyzed 12/06/96

n/a

Prep Date

Prep Batch n/a

Analytical Batch VJ474

Run #2

CAS No.	Surrogate Recoveries	Run# 1	Run#2	Limits
1868-53-7	Dibromofluoromethane	89%		86-118%
2037-26-5	Toluene-D8	106%		88-110%
460-00-4	4-Bromofluorobenzene	91%		86-115%

B = Indicates that analyte is found in associated method blank

N = Indicates presumptive evidence of a compound

Date Sampled: 12/04/96

Page 1 of 2

Client Sample ID: GW-120496-PK-008

Lab Sample ID: E16738-9

Matrix: AQ - Ground Water

AQ - Ground Water Date Received: 12/05/96 SW846 8260 Percent Solids: n/a

Project: Ecolab

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
|Run #1 J9165.D 1 12/06/96 GTT n/a n/a VJ474

Run #2

Method:

VOA TCL List

CAS No.	Compound	Result	RDL	Units	Q
67-64-1	Acetone	ND	5.0	ug/l	
71-43-2	Benzene	ND	0.47	ug/l	
75-27-4	Bromodichloromethane	ND	0.31	ug/l	
75-25-2	Bromoform	ND	0.97	ug/l	
108-90-7	Chlorobenzene	ND	0.40	ug/l	
75-00-3	Chloroethane	ND	1.5	ug/l	
67-66-3	Chloroform	ND	0.44	ug/l	
75-15-0	Carbon disulfide	ND ·	1.0	ug/l	
56-23-5	Carbon tetrachloride	ND	0.48	ug/l	
75-34-3	1,1-Dichloroethane	ND	0.42	ug/l	
75-35-4	1,1-Dichloroethylene	ND	0.40	ug/l	
107-06-2	1,2-Dichloroethane	ND	0.85	ug/l	
78-87-5	1,2-Dichloropropane	ND ·	0.54	ug/l	
124-48-1	Dibromochloromethane	ND	0.43	ug/l	
156-69-4	cis-1,2-Dichloroethylene	ND	0.79	ug/l	
10061-01-5	cis-1,3-Dichloropropens	ND-	0.35	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	0.65	ug/]	
10061-02-6	trans-1,3-Dichloropropene	ND	0.46	ug/l	
100-41-4	Ethylbenzene	ND.	0.36	ug/l	
591-78-6	2-Hexanone	ND	5.0	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	1.2	ug/l	
74-83-9	Methyl bromide	ND.	0.92	ug/l	
74-87-3	Methyl chloride	ND	0.77	ug/l	
75-09-2	Methylene chloride	ND	1.1	ug/l	
78- 9 3-3	Methyl ethyl ketone	ND	1.0	ug/l	
100-42-5	Styrene	ND	0.37	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	0.31	ug/l	
79-34-5	1,1,2,2-Tetrachioroethane	ND	0.38	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	0.70	ug/l	
127-18-4	Tetrachioroethylene	ND	0.60	ug/l	
108-88-3	Toluene	ND	0.36	ug/l	
79-01-6	Trichloroethylene	ND	0.26	ug/l	
75-01-4	Vinyl chloride	ND	1.3	ug/l	
1330-20-7	Xylene (total)	ND	0.62	ug/l	

18

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

Page 2 of 2

Client Sample ID: GW-120496-PK-008

Lab Sample ID:

E16738-9

Matrix:

AQ - Ground Water

Method:

SW846 8260

Date Sampled: 12/04/96 Date Received: 12/05/96

Percent Solids: n/a

Project: **Ecolab**

File ID J9165.D Run #1

DF 1

Analyzed 12/06/96

By GTT **Prep Date** n/a

Prep Batch n/a

Analytical Batch

VJ474

Run #2

CAS No.	Surrogate Recoveries	Run# 1 Run# 2	Limits
1868-53-7 2037-26-5	Dibromofluoromethane Toluene-D8	87% 104 %	86-118 % 88-110 %
460-00-4	4-Bromofluorobenzene	93%	86-115%

GC/MS SUPPORT DATA SUMMARY

GC/MS METHODOLGY SUMMARY

VOLATILE ORGANIC METHOD 8260

This method can be summarizied as follows: For low level contamination, an insert gas is bubbled through 5ml sample. The purgeables are efficiently transferred from the aqueous phase to the vapor phase. The vapor is swept through a sorbent column where the purgeable are trapped. When purging is complete, the sorbent tube is heated and backflushed with helium to desorb trapped sample components. The analytes are desorbed directly to a large bore capillary on capillary precolumn before being flash evaporated to a narrow bore capillary for analysis.

The column is temperature programmed to separate the analytes which are then detected with a mass spectrometer (MS) interfaced to the gas chromatograph. Wide bore capillary columns require jet separator, whereas narrow bore capillary collumns can be directly interfaced to the ion source.

Analytes eluted from the capillary column are introduced into the mass spectrometer via a jet separator or a direct connection. Identification of target analytes is accomplished by comparing their mass spectra with the electron impact spectra of authentic standard. Quantitation is accomplished by comparing the response of a major (quantitation) on relative to internal standard with a five-point calibration curve.

GC/MS Analysis Case Narrative/Conformance/Non-Conformance Summary

Fra	action: VOLATILE	N	O	YES
1.	Chromatograms Labeled/Compounds Identified. (Field Samples and Method Blanks)	ſ	1	[/]
2.	GC/MS Tune Meet Criteria.	ī	1	[1
3.	GC/MS Tuning Frequency - Performed every 24 hours for 600 series and 12 hours for 8000 series.	Į	1	[/]
4.	GC/MS Calibration - Initial Calibration performed within 30 days before sample analysis and continuing calibration performed within 24 hours of samples analysis for 600 series and 12 hours for 8000 series.	ι	j	[/]
5 .	GC/MS Calibration Requirements			,
	a. Calibration Check Compounds b. System Performance Check Compounds	Ţ]	
6.	Blank Contamination	[.0	/1	[]
	If yes, list compounds and in each blank:			
7.	Surrogate Recoveries Meets Criteria.	[]	[/]
	If not met, list those samples which fall outside the acceptable range and confirmed by reanalysis:			
8.	Matrix Spike/Matrix Spike Duplicate Recoveries Meet Criteria.	[i	[/]
	If not met,refer to MS/MSD and blank spike summaries:		_	
9.	Internal Standard Area/Retention Time Shift Meet Criteria		1	1/1
	If not met, list those samples which fall outside the acceptable range and confirmed by reanalysis:			
10.	Extraction Holding Time Met	[]	[N/1
	If not met, list number of days exceeded for each samples:			
11.	Analysis Holding Time Met]	[/]
	If not met, list number of days exceed for each sample:			
Ada	ditional Comments:	· · · · · · · · · · · · · · · · · · ·		
		·_		
QC	Review Signature: Norum Coyle Date: 12/17/96		<u>`</u>	21

2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: ACCUTEST Contract: NA

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: NA

	A SAMPLE	SMC1	SMC2	SMC3	TOT
	SAMPLE NO.	#	#	#	OUT
1	МВ	91	100	97	0
2	E16738-1	88	103	91	0
3	E16738-2	87	101	98	0
4	E16738-3	89	102	98	0
5	E16738-4	88	101	98	0
6	E16738-5	89	103	94	0
7	E16738-6	92	101	97	0
8	E16736-7	90	101	92	0
9	E16736-8	89	106	91	0
0	E16738-9	87	101	93	0

QC LIMITS

(86-118)

(88-110)

SMC1 = dibromofluoromethane (s SMC2 = toluene-d8 (s)

SMC3 = 4-bromofluorobenzene (s (86-115)

Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: ACCUTEST Contract: NA

Lab Code: NA Case No.: NA SAS No.: NA SDG No.: NA

	A SAMPLE SAMPLE NO.	SMC1 #	SMC2 #	SMC3 #	TOT OUT
1	MB1	88	100	94	0
2	E16738-9MS	96	102	92	0
3	E16738-9MSD	93	101	96	0
4	BS	93	105	89	0
5	E16727-1	92	102	92	0

QC LIMITS

SMC1 = dibromofluoromethane (s SMC2 = toluene-d8 (s) (86-118)

(88-110)

SMC3

4-bromofluorobenzene (s

(86-115)

Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: E16738

Àccount:

CRAIL Conestoga-Rovers & Associates

Project:

Ecolab

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
E16738-9MS	J9176.D	1	12/06/96	GTT	n/a	n/a	VJ474
E16738-9MSD	J9177.D	1	12/06/96	GTT	n/a	n/a	VJ474
E16738-9	J9165.D	1	12/06/96	GTT	n/a	n/a	VJ474

The QC reported here applies to the following samples:

Method: SW846 8260

Page 1 of 2

		E16738	1 -9	Spike	MS	MS	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	%	RPD	Rec/RPD
67-64-1	Acetone	ND		50	49.4	99	54.9	110.	10	1-267/14
71-43-2	Benzene	ND		50	49.3	99	47.9	96	3	83-110/16
75-27-4	Bromodichloromethane	ND		50	49.1	98	50.4	101	3	89-121/13
75-25-2	Bromoform	ND		50	46.3	93	50.6	101	9	86-120/15
108- 9 0-7	Chlorobenzene	ND		50	52.0	104	50.5	101	3	89-113/13
75-00-3	Chloroethane	ND		50	53.2	106	48.3	97	10	85-136/17
67 -6 6-3	Chloroform	ND		50	47.7	95	45.1	90	6	79-122/15
75-15-0	Carbon disulfide	ND		50	50.3	101	44.5	89	12	
56-23-5	Carbon tetrachloride	ND		50	45.8	92	42.0	54	9	79-127/19
75-34-3	1,1-Dichloroethane	ND		50	47.0	94	44.0	88	6 . 1	81-124/21
75-35-4	1,1-Dichloroethylene	ND		50	47.5	95	46.9	94	1	85-113/25
107-06-2	1,2-Dichloroethane	ND		50	49.9	100	50.1	100	0	85-124/12
78-87-5	1,2-Dichloropropane	ND		50	50.2	100	47.8	96	5	86-113/12
124-48-1	Dibromochloromethane	ND		50	49.1	98	50.9	102	4	89-122/11
156-69-4	cis-1,2-Dichloroethylene	ND		50	47.6	95	46.3	93	3	87-112/18
10061-01-5	cis-1,3-Dichloropropene	ND		50	48.2	96	47.7	95	1	93-113/11
156-60-5	trans-1,2-Dichloroethylene	ND		50	48.4	97	46.6	93	4	87-111/18
10061-02-6	trans-1,3-Dichloropropene	ND		50	43.9	88	45.6	91	4	85-107/12
100-41-4	Ethylbenzene	ND		50	54.9	110	50.1	100	9	87-113/17
591-78-6	2-Hexanone	ND		50	48.2	96	49.2	98	2	
108-10-1	4-Methyl-2-pentanone	ND		50	48.0	96	50.4	101	5	52-137/28
74-83- 9	Methyl bromide	ND		50	49.2	98	42.7	85	14	80-129/16
74-87-3	Methyl chloride	ND		50	41.4	83	39.9	80	4	68-140/36
75-09-2	Methylene chloride	ND		50	48.6	97	47.3	95	3	80-118/19
78-93-3	Methyl ethyl ketone	ND		50	45.8	92	46.8	94	2	61-121/37
100-42-5	Styrene	ND		50	53.7	107	53.4	107	0 *	86-113/15
71-55-6	1,1,1-Trichloroethane	ND		50	44.9	90	43.4	87	3	80-122/21
79-34-5	1,1,2,2-Tetrachloroethane	ND		50	50.8	102	53.2	106	5	82-114/19
79-00-5	1,1,2-Trichloroethane	ND		50	52.6	105	52.7	105	0	88-116/13
127-18-4	Tetrachioroethylene	ND		50	52.8	106	49.6	99	6	61-119/22
108-88-3	Toluene	ND		50	50.2	100	48.3	97	4	88-115/19
79-01-6	Trichloroethylene	ND		50	51.4	103	48.1	96	7	86-114/34
75-01-4	Vinyl chloride	ND		50	43.8	88	42.6	85	3	74-121/14
1330-20-7	Xylene (total)	ND		150	161	107	159	106	1	88-115/16

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: E16738

Account:

CRAIL Conestoga-Rovers & Associates

Project:

Ecolab

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
E16738-9MS	J9176.D	1	12/06/96	GTT	n/a	n/a	VJ474
E16738-9MSD	J9177.D	1	12/06/96	GTT	n/a	n/a	VJ474
E16738-9	J9165.D	1	12/06/96	GTT	n/a	n/a	VJ474

The QC reported here applies to the following samples:

Method: SW846 8260

Page 2 of 2

CAS No.	Surrogate Recoveries	MS	MSD	E16738-9	Limits
2037-26-5	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	102%	101%	87% 101% 93%	86-118% 88-110% 86-115%

Blank Spike Summary Job Number: E16738

Page 1 of 2

Account:

CRAIL Conestoga-Rovers & Associates

Project:

Ecolab

Sample VJ474-BS	File ID J9178.D	DF 1	Analyzed 12/06/96	By GTT	Prep Date n/a	Prep Batch n/a	Analytical Batch VJ474

The QC reported here applies to the following samples:

Method: SW846 8260

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
67-64-1	Acetone	20	22.6	113	1-267
71-43-2	Benzene	20	21.3	106	83-110
75-27-4	Bromodichloromethane	20	21.1	106	89-121
75-25-2	Bromoform	20	18.9	94	86-120
108-90-7	Chlorobenzene	20	20.4	102	89-113
75-00-3	Chloroethane	20	22.0	110	85-136
67-66-3	Chloroform	20	19.5	98	79-122
75-15-0	Carbon disulfide	20	19.8	99	
56-23-5	Carbon tetrachloride	20	23.5	118	79-127
75-34-3	1,1-Dichloroethane	20	19.1	96	81-124
75-35-4	1,1-Dichloroethylene	20	19.4	97	85-113
107-06-2	1,2-Dichloroethane	20	21.2	106	85-124
78-87-5	1,2-Dichloropropane	20	21.2	106	86-113
124-48-1	Dibromochloromethane	20	19.7	98	89-122
156-69-4	cis-1,2-Dichloroethylene	20	18.7	94	87-112
10061-01-5	cis-1,3-Dichloropropene	20	19.7	98	93-113
156-60-5	trans-1,2-Dichloroethylene	20	19.8	99	87-111
10061-02-6	trans-1,3-Dichloropropene	20	18.1	90	85-107
100-41-4	Ethylbenzene	20	21.9	110	87-113
591-78-6	2-Hexanone	20	18.8	94	
108-10-1	4-Methyl-2-pentanone	20	20.0	100	52-137
74-83-9	Methyl bromide	20	19.6	98	80-129
74-87-3	Methyl chloride	20	20.1	100	68-140
75-09-2	Methylene chloride	20	19.0	95	80-118
78-93-3	Methyl ethyl ketone	20	19.9	100	61-121
100-42-5	Styrene	20	20.6	103	86-113
71-55-6	1,1,1-Trichloroethane	20	18.5	92	80-122
79-34-5	1,1,2,2-Tetrachloroethane	20	20.4	102	82-114
79-00-5	1,1,2-Trichloroethane	20	23.3	116	88-116
127-18-4	Tetrachloroethylene	20	22.7	114	61-119
108-88-3	Toluene	20	22.3	112	88-115
79-01-6	Trichloroethylene	20	21.8	109	86-114
75-01-4	Vinyl chloride	20	17.1	86	74-121
1330-20-7	Xylene (total)	60	66.4	111	88-115

Blank Spike Summary Job Number: E16738

E16738

Account: CRAIL Conestoga-Rovers & Associates

Project: **Ecolab**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VJ474-BS	J9178.D	1	12/06/96	GTT	n/a	n/a	VJ474

The QC reported here applies to the following samples:

Method: SW846 8260

Page 2 of 2

CAS No.	Surrogate Recoveries	BSP	Limits
	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	93% 105% 89%	86-118 % 88-110 % 86-115 %

Method Blank Summary

Job Number: E16738

Account:

CRAIL Conestoga-Rovers & Associates

Project:

Ecolab

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VJ474-MB	J9154.D	1	12/05/96	GTT	n/a	n/a	VJ474
				,			

The QC reported here applies to the following samples:

Method: SW846 8260

Page I of 2

CAS No.	Compound	Result	RDL	Units Q
67-64-1	Acetone	ND	5.0	ug/l
71-43-2	Benzene	ND.	0.47	ug/l
75-27-4	Bromodichloromethane	ND	0.31	ug/l
75-25-2	Bromoform	ND	0.97	ug/l
108-90-7	Chlorobenzene	ND	0.40	ug/l
75-00-3	Chloroethane	ND	1.5	ug/l
67-66-3	Chloroform	ND	0.44	ug/l
75-15-0	Carbon disulfide	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	0.48	ug/l
75-34-3	1,1-Dichloroethane	ND +	0.42	ug/l
75-35-4	1,1-Dichloroethylene	ND	0.40	ug/l
107-06-2	1,2-Dichloroethane	ND	0.85	ug/l
78-87-5	1,2-Dichloropropane	ND	0.54	ug/l
124-48-1	Dibromochloromethane	ND	0.43	ug/l
156-69-4	cis-1,2-Dichloroethylene	ND	0.79	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	0.35	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	0.65	ug/i
10061-02-6	trans-1,3-Dichloropropene	ND.	0.46	ug/l
100-41-4	Ethylbenzene	ND	0.36	ug/l
591-78-6	2-Hexanone	ND	5.0	ug/l
108-10-1	4-Methyl-2-pentanone	ND	1.2	ug/l
74-83-9	Methyl bromide	ND	0.92	ug/l
74-87-3	Methyl chloride	ND	0.77	ug/l
75-09-2	Methylene chloride	ND	1.1	ug/l
78-93-3	Methyl ethyl ketone	ND	1.0	ug/l
100-42-5	Styrene	ND	0.37	ug/l
71-55-6	1,1,1-Trichloroethane	ND	0.31	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.38	ug/l
79-00-5	1,1,2-Trichloroethane	ND	0.70	ug/l
127-18-4	Tetrachloroethylene	ND	0.60	ug/l
108-88-3	Toluene	ND	0.36	ug/l
79-01-6	Trichloroethylene	ND	0.26	ug/l
75-01-4	Vinyl chloride	ND	1.3	ug/l
1330-20-7	Xylene (total)	ND	0.62	ug/l

Method Blank Summary

Job Number: E16738

Account:

CRAIL Conestoga-Rovers & Associates

Project:

Ecolab

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VJ474-MB	J9154.D	1	12/05/96	GTT	n/a	n/a	VJ474

The QC reported here applies to the following samples:

Method: SW846 8260

Page 2 of 2

CAS No.	Surrogate Recoveries		Limits
	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	91% 100% 97%	86-118 % 88-110 % 86-115 %

					4 —			
CRA	SHIPPED TO (L	aboratory	/ Na	me): ,	Acci	r.fest	, N.J	
CONESTOGA-ROVERS & ASSOCIATES								•
B615 W. Bryn Mawr Avenue Chicago, Illinois 60631 (773)380—9	DEFERENCE NU	MDED.		PPO IS	CT NAL	IE: Ec	-1-6	
		MDER:	l	- KOOL	O: 11AR	ne. 2 6	DIAG	
CHAIN OF CUSTODY RECO	ORD 9234				45555	/1/	///	, , , , , , , , , , , , , , , , , , ,
SAMPLER'S Pat Klick PR	NAME: Pat Kirc	SAMPLE MATRIX	AINER	PAKAN	METERS	State /	VBILLETCH	PENARKS REMARKS
SEQ. DATE TIME SAMPI	E No.	SAMPLE MATRIX	SON	- 20°	15 Care	//*/	North	
1 12/3/96 15/40GW-120396-PK	-001 E16738-1	Water	3					48 hour
2 1 555 6w-120396- PM		1-1-1	3	V	P			furnaround
3 1645 GW-120396-PA	(-003 .>	111	3					
4 4 17:25 GW- 120396- AC		-	3	1			+	
5 124/96 11:25 GW-120496-F	K-005 -5		3	V				
6 1 1205 GW-120496-PA	-1006 -1	1	3	<u>~</u>			- 	
7 12:40GW-120496-1	K-C07 · 1	- 		V-	 			 / (45)
19-/46 1730 Trip Blank	- <u>Q</u>	 	2	Y-	$+ \downarrow - \downarrow$		- -	
Temperature	Black- 0K-1908 -9	1-1-	3	1	 		 -	
8 12490 1345 Gw-120496-	K-008 -9	+-	_عــا				+	
		+	 				 	
		1	>		1-1-1		111	- AT ACCUTEST
			 			SAMPI	ES RECEIVED	H CEAT ACCUTEST
								COMM
TO	TAL NUMBER OF CO	NTAINERS	27					
RELINQUISHED BY: Pat blick	DATE: 12/	1/96 RE	CEIV	ED BY	(- D	SEC M	<u> </u>	DATE:
	IIME:	<u> </u>			1	A CO		TIME:
RELINQUISHED BY	DATE: 17-3		CEIV	ED BY	:		,	DATE: 12-552
@	TIME: OS			ED BY				TIME: OSD
RELINQUISHED BY:	DATE:	Č		ED 81	•	-		TIME:
METHOD OF SHIPMENT: Fel o				BILL N	10. 8	754	7 601	
White -Fully Executed Copy	SAMPLE TEAM:						ORATORY	
Yellow —Receiving Laboratory	1/1				-	-: 3 		2498
Pink -Shipper Copy	7			DAT	F.	TIL	F.	4470
Goldenrod -Sampler Copy				IUAI	£.i	TIM	ie!	•

t •